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Histogram Curve Matching Approaches for
Object-based Image Classifi cation of

Land Cover and Land Use
Sory I. Toure, Douglas A. Stow, John R. Weeks, and Sunil Kumar

Abstract
The classifi cation of image-objects is usually done using 
parametric statistical measures of central tendency and/or 
dispersion (e.g., mean or standard deviation). The objectives 
of this study were to analyze digital number histograms of 
image objects and evaluate classifi cations measures exploit-
ing characteristic signatures of such histograms. Two histo-
grams matching classifi ers were evaluated and compared to 
the standard nearest neighbor to mean classifi er. An ADS40 
airborne multispectral image of San Diego, California was 
used for assessing the utility of curve matching classifi ers in 
a geographic object-based image analysis (GEOBIA) approach. 
The classifi cations were performed with data sets having 
0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that 
histograms are reliable features for characterizing classes. 
Also, both histogram matching classifi ers consistently per-
formed better than the one based on the standard nearest 
neighbor to mean rule. The highest classifi cation accuracies 
were produced with images having 2.5 m spatial resolution. 

Introduction
Remotely sensed images have been most commonly clas-
sifi ed using pixel-based approaches to generate maps of 
land-use and land-cover (LULC). With such approaches, clas-
sifi cation is primarily based on the spectral characteristics 
of individual pixels. In a supervised classifi cation, a pixel 
is identifi ed or labeled as the class to which it has the most 
similar spectral signature relative to training data signatures 
(Mitchell, 2008). Pixel-based approaches to image classifi ca-
tion normally do not incorporate information about spatial 
location and geographic association, and output classifi ca-
tion products commonly contain spurious pixels that are 
misclassifi ed and/or smaller than the minimum mapping 
unit. Moreover, there is an implicit assumption that the 
spatial resolution of the image data is similar to or coarser 
than the classifi cation features of interest (Goodchild, 1994). 
However, this is not true for most high spatial resolution 
imagery (Castilla et al., 2008). When classifying high spatial 
resolution imagery for urbanizing environments, Cleve et al. 
(2008) found that a pixel-based approach was 41.74 percent 
less accurate than an object-based approach for the built area 
category.
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Object-based classifi cation is a useful alternative to 
traditional pixel-based approaches, as groups of pixels 
or image objects are classifi ed as an ensemble rather than 
individually (Blaschke, 2009). As a component of geographic 
object-based image analysis (GEOBIA), adjacent pixels that 
meet some similarity criteria are grouped to form image 
segments or objects (Haralick and Shapiro, 1985). Image 
objects are subsequently classifi ed after they are delineated 
vis-à-vis a segmentation routine. Spectral as well as spatial 
and contextual information are available for the classifi cation 
of objects relative to single pixels (Blaschke, 2009). 

Classifi cation of segments is usually based on statistical 
measures of central tendency (e.g., mean) and dispersion 
(e.g., variance or standard deviation) associated with normally 
distributed (i.e., Gaussian) data. Walter (2003) utilized the 
mean grey value of the blue, green, red, and near infrared (NIR) 
bands, their variances, the mean grey value texture from the 
blue band, the mean grey value and variance vegetation index, 
the variance texture, and four others (sixteen in total) as input 
features while using an object-based classifi cation approach 
of remote sensing data for the purpose of change detection. 
High spatial resolution images tend to be spatially heteroge-
neous, particularly for built landscapes that are composed of 
heterogeneous mixtures of surface material and land-cover 
types. The frequency distributions of such data often yield 
within-segment pixel groups having complex and non-normal 
frequency distributions. Thus, classifying segments having 
heterogeneous pixel data with traditional classifi cation meth-
ods that assume a normal distribution of the data may not be 
statistically appropriate or accurate (Stow et al., 2012). Wu 
et al. (2007) classifi ed urban land uses using a per-fi eld 
approach based on parcel boundary data to delineate image 
objects (rather than through image segmentation) and tested 
a variety of classifi cation algorithms. They found that deci-
sion tree and other classifi ers that do not require assump-
tions regarding the statistical properties of the input data, 
such as parallelepiped and neural network, performed better 
compared to Mahalanobis distance and maximum likelihood 
approaches, algorithms that are based on normality assump-
tions. Thus, alternative classifi cation approaches should 
be developed and tested for the mapping of heterogeneous 
scenes such as urban areas when classifying high spatial reso-
lution data. Curve matching techniques may be appropriate 
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3. Does the classifi cation of image objects representing LULC 
objects by histograms matching algorithms show potential 
to improve classifi cation accuracy relative to a conventional 
nearest neighbor classifi er?

4. Is the histogram matching classifi cation approach sensitive to 
differences in spatial resolution of image data?

5. Do different quantization levels infl uence histogram matching 
classifi cation results?

6. Which feature inputs improve classifi cation accuracy?

Study Area and Data
The full extent of the study area covers about 152 km2 and 
encompasses the communities of La Jolla, Clairemont, and 
Mira Mesa, within the City of San Diego, as well as Descanso, 
all within San Diego County, California. Figure 1 depicts the 
study area and the location of the study sites. The geographic 
coordinates of the rectangular study area are 32°46'13" to 
32°56'38" N, and 116°46'15" to 117°12'44" W. It contains resi-
dential, light industry, schools, offi ce parks, and other open 
space land-use (parks and golf courses). The variety of LULC 
in this area is representative of San Diego County in general. 
Subsets of the aerial imagery contained in Figure 1 were 
generated and utilized for testing per-object classifi cation 
approaches. 

The physical geography and built environments of the 
study area are typical of those found throughout southern 
California. Topographic features consist of mesas, canyons, 
and coastal plains. A Mediterranean-type climate is prevalent, 
with rainy winters and mild temperatures year round. The 
terrain and climate type have facilitated the settlement of a 
large and diverse human population. The vegetation is com-
posed mainly of chaparral and coastal sage shrub vegetation 
communities. 

An ADS40 airborne multispectral image of San Diego, 
California was utilized for assessing the utility of curve 
matching classifi ers applied to image objects in the context of 
LULC classifi cation. Multispectral image data were captured 
by EarthData (now called Fugro EarthData, Inc.) and made 

for the classifi cation of within segment pixel frequency distri-
butions, especially when based on high spatial resolution data 
of built environments (Stow et al., 2012). 

In remote sensing, curve matching techniques have been 
used for classifi cation of hyperspectral image data, by measur-
ing curve similarity between a known spectrum from a spec-
tral library or training pixels with the spectra of individual 
pixels within an image (van der Meer, 2006). Mineralogies 
and lithologies are commonly mapped by quantitatively 
comparing surface refl ectance curves from imaging spectro-
meter data set with known diagnostic refl ectance spectra of 
minerals and rock units using spectral matching techniques 
(e.g., Kruse et al., 1993). Histogram matching is also applied 
to entire images as an approach to radiometric normalization 
of multitemporal image data sets (Coulter et al., unpublished 
data, 2009).

Curve matching techniques for the purpose of classifi ca-
tion have been used in fi elds other than remote sensing. In 
computer vision, color is one of the most popular and effec-
tive low-level cues for content-based image retrieval (CBIR) 
(Qui et al., 2004). Most often, color is represented through 
diverse forms of histograms. Swain and Ballard (1991) pro-
posed a color indexing algorithm to identify color images. 
Histograms are generated for the input and target images in a 
database. Images are then matched using the histogram inter-
section method. To query image and video databases, Saykol 
et al. (2005) generated histograms of the color and shape of 
objects that needed to be retrieved. The two histograms were 
then integrated and a similarity measure (histogram intersec-
tion) was computed between the query object and a database 
object. Histogram matching can be implemented through 
template matching procedures by searching for image objects 
similar to training templates (Brunelli and Milch, 2001). 
Thus, histogram shapes can be used as the basis of similarity 
measures between training and target objects and for object 
classifi cation. 

As a precursor to this study, curve matching techniques 
were tested by Stow et al. (2012) for the classifi cation of 
LULC of the city of Accra, Ghana. They examined the within 
and between class variability of frequency distributions 
of QuickBird multispectral digital numbers (DN) values of 
within-segment pixels to determine if within-class signatures 
are similar and between-class curves are separable. Stow 
et al. (2012) evaluated a quantitative measure and classifi ca-
tion approach that exploits characteristic frequency distribu-
tions (i.e., histogram signatures) of within-segment pixels. 
Generally, LULC classes exhibited characteristic histograms 
and the curve matching approach performed slightly better 
than a nearest neighbor classifi er. The nature of the Stow et al. 
(2012) study was exploratory. The authors used a limited 
sample size with general LULC classes. Only a single curve 
matching algorithm was analyzed. The objective of this study 
is to further examine the between- and within-class variability 
of image object histogram and evaluate object-based classifi ca-
tion techniques, primarily with histogram matching classi-
fi ers, using very high spatial resolution image data. Airborne 
multispectral data of the City of San Diego, California was 
evaluated in the context of mapping fi ve LULC classes. The 
general objective of the study was to exhaustively test the 
viability of histogram matching techniques as effective classi-
fi ers within GEOBIA. 

The following questions were examined as part of this 
study:

1. Do LULC objects derived from high spatial resolution 
multispectral images have non-normal digital number 
frequency distributions?

2. Are the histograms of LULC objects consistent and uniquely 
characteristic? 

Figure 1. Study area map within San Diego County in 
California. The shaded rectangular areas delineate the 
extent of coverage of the ADS40 imagery, and the individ-
ual frames depict locations of the specifi c image frames 
used for object-based classifi cation trials.

433-440_12-040.indd   434433-440_12-040.indd   434 4/13/13   10:16 PM4/13/13   10:16 PM



 PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING M a y  2 0 1 3 435

delineated using ENVI tools. Two histogram matching algo-
rithms: Histogram Matching Root Sum Squared Differential 
Area (HMRSSDA) and Histogram Angle Mapper (HAM), as well 
as the conventional nearest neighbor (or minimum distance in 
feature space) classifi ers, were implemented with IDL.

Image objects derived from the 2003 ADS40 image were 
classifi ed into one of the seven (when considering each 
Non-residential Urban class individually) LULC classes defi ned 
above. The image has an original spatial resolution of 0.5 m 
and was spatially aggregated using simple pixel block averag-
ing to create coarser images having 2.5 m and 5.0 m spatial 
resolution (representing a range spatial resolutions for com-
mercial satellite multispectral data), to examine sensitivity of 
histograms and curve matching classifi cation to spatial resolu-
tion. During the conversion procedures, the new pixel value 
represents the average of the spatially aggregated pixel values.

Generation of LULC Objects, their Histograms and Statistics
Regions of interest (ROI) representing the seven LULC classes 
were interactively interpreted and digitized from the ADS40 
images with reference to the SANDAG vector fi le. The LULC 
polygons of a particular class were overlaid on the images and 
ROIs for that class were manually digitized with the Region 
of Interest tool in ENVI. Many of the polygons representing 
park/golf courses and single family residential (SFR) classes 
were large, in which case ROIs were digitized from within the 
polygons. For the remaining classes, ROIs were delineated 
using the original polygon boundaries of the SANDAG LULC 
vector layer. Table 1 shows the number of ROIs and their size 
for each class. Between (13) and (50) ROIs were selected for 
each LULC types. The total number of ROI amounts to 183. The 
number of ROIs varied for each class because of their relative 
occurrence within the study area. SFR was the most prevalent 
class and School the least frequently occurring. The same ROIs 
polygons were used to extract pixel groups for all three spatial 
resolution image sets. 

Once ROIs were delineated, DN values for the red and NIR 
bands were extracted for all pixels belonging to a ROI and 
statistics were generated. The statistics included the mean 
and standard deviation. Histogram curves for each ROI were 
normalized by dividing the frequency value of each DN by 
the total number of pixels contained within that ROI. Thus, 
the frequency distribution of DNs for each ROI varies between 
0 and 1. An analyst visually analyzed the curves shapes and 
normality of distributions, and checked for histogram char-
acteristics and similarities within a class and dissimilarities 
between classes.

After generating histograms and statistics for all ROIs, the 
ROIs were separated into two categories: one group for train-
ing and the other for testing. The training histogram curve of 
a particular class was selected after evaluating all histograms 
for that class. Following Stow et al. (2012), three ROI samples 
were averaged to generate training curves, by computing the 
average of the three DN values for each bin. The three ROIs 
were chosen that were most similar and representative of a 
given class. The Park/Golf Courses class had important vari-
ability in its histograms. Although they were bell-shaped, 
the peaks of the curves generally occurred between two 
separate and distinct intervals. Two means histograms 
that represented the two trends (subclasses) for the Park/
Golf Courses class were therefore generated. The remain-
ing classes were represented with one mean histogram. The 
mean ROIs were kept the same for the red and NIR bands, as 
well as for the 0.5 m, 2.5 m, and 5 m spatial resolutions. After 
selecting ROIs to be used as training curves, the remaining 
ROIs were utilized for testing purposes. Table 1 presents the 
number and size of the ROIs as well as a summary of their 
utilization for each class.

available pro bono to public institutions in San Diego County. 
The Leica ADS40 sensor is based on a linear array radiometer 
and yields digital orthoimagery through a softcopy photo-
grammetry workfl ow. Image data were acquired in October 
and November 2003. The imagery covers the areas burned in 
the Cedar and Paradise fi res as well as a substantial amount 
of peripheral unburned areas, which was used for this study. 
The ADS40 data were originally provided in UTM projection 
with a spatial resolution of 0.5 m. The data were reprojected 
to State Plane coordinates with a ground sampling distance 
of about 0.5 m. The multispectral data set includes four broad 
wavebands in the blue, green, red, and near infrared (NIR) 
portion of the electromagnetic spectrum and has an original 
radiometric resolution of 11 bits. Only the red and NIR bands 
were used in the study. The data set had been compressed 
from 11 to 8 bits.

A geographic information system (GIS) layer depicting 
LULC distributions in vector format and representing 2004 
conditions had been generated by the San Diego Association 
of Governments (SANDAG) and was utilized to extract training 
data for analysis of LULC histogram signatures and for LULC 
classifi er tests. The most commonly occurring LULC classes 
within the study area are: (a) Single Family Residential/Mobile 
home parks (SFR), (b) Multi-Family Residential (MFR), (c) 
Parks/Golf courses, (d) Schools, and (e) Non-residential Urban. 
The Non-residential Urban class consists of three subclasses: 
Commercial, Industrial park, and Offi ce High Rise (OHR).

Methods
Since the study emphasizes the classifi cation phase of GEOBIA, 
sample image objects or segments were selected and delineated 
manually rather than through semi-automated segmentation. 
The Interactive Data Language (IDL) programming tool within 
ENVI 4.8, an image processing and analysis software package, 
was used to develop and test histogram curve matching classifi -
ers. Figure 2 describes the processing fl ow. Training and testing 
objects or regions of interest (ROI) were interactively (manually) 

Figure 2. Processing fl ow - HMRSSDA: Histogram Match-
ing Root Sum Squared Differential Area (HAM: Histogram 
Angle Mapping; NN: Nearest Neighbor).
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where FS = mean and/or standard deviation of the subject , 
and FR = reference  mean or standard deviation. Objects mean 
(μ) and standard deviation (σ) values were also combined to 
perform this classifi cation (NN). The formulae for computing 
mean scores from multiple band inputs were:

 Quadratic Mean: μ σ σreμμ d nμ ir red nσ ir
2 2 2 2σ

4
+μnμ ir

2μ  (6)

 Power Mean: μ σ σreμμ d nμ ir red nσ ir
4 4 4 4σ4

4
+μnμ ir

4μ  (7)

 Geometric Mean: 
μ σ σreμμ d nμ ir red nσ ir∗ ∗μμ i ∗

4
. (8)

In addition to testing the performance of the three classifi ca-
tion measures, two other variables were analyzed, image spa-
tial resolution, and histogram quantization level. Images with 
 0.5 m (original data), 2.5 m and 5.0 m (aggregated or coarsened) 
spatial resolutions were evaluated. The ADS40 data used in 
this study have a radiometric resolution of 8-bits, such that 
DN values have a potential range from 0 to 255, or 256 bins. 
In order to analyze the effect of the apparent radiometric 
precision (i.e., number of histogram bins) and the utility of 
bin aggregation on reducing noise effects on classifi cation 
results, the original quantization levels of ROI data values 
were reduced to produce data sets having reduced quantiza-
tion levels of 128, 64, and 32. The reduction of quantization 
level or number of histogram bins was achieved through bin 
aggregation using a script written in IDL.

Classifi cation Analyses
Test ROIs were subjected to the two histograms curve match-
ing procedures and to the nearest neighbor classifi ers based 
on LULC templates derived from the reference/training object 
curves. With multiple spatial resolutions (three), quantization 
levels (four), classifi ers (three) and approaches to combining 
multiple band (three) and statistical measures (three), 159 
accuracy/error matrices were generated through the clas-
sifi cation trials. For each error matrix, the overall accuracy, 
producer’s and user’s accuracy of the individual classes, KHAT 
statistic and its variance, as well as conditional kappa for each 
class and their variances were generated. Conditional Kappa 
is used to assess the agreement for an individual class within 
an error matrix (Congalton and Green, 2009).

A Z-test was used to test for the signifi cance of a classi-
fi cation. If the Z-value is greater than 1.96 at the 0.05 signifi -
cance level, the classifi cation product is more accurate than a 
random classifi cation (Congalton and Green, 2009). A Z-test 
was also performed to test if any two error matrices were 
signifi cantly different from each other. Within an analysis sub-
section, only the largest difference between error matrices was 
tested for signifi cance when the test result showed that they 
were not signifi cantly different. This was done because the 
non-signifi cance of the biggest difference between accuracy 
results implies that smaller differences are also not signifi -
cant. Two classifi cation results are signifi cantly different from 
each other if the Z-value is also greater than 1.96 (Congalton 
and Green, 2009). The objective was to determine which spa-
tial resolution, quantization level, and classifi cation algorithm 
yielded the most accurate classifi cation results. The same 
statistical tests were run for each class using their conditional 
kappa coeffi cients and variances to examine individual class 
accuracies.

Classifi cation Algorithms
Two curve matching classifi cation measures were utilized to 
classify histograms of the test LULC ROIs for the Red and NIR 
bands: Histogram Matching Root Sum Squared Differential
Area (HMRSSDA) and Histogram Angle Mapper (HAM). The 
formulae for these measures are:

HMRSSDA: ( )
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where: FSi = frequency of subject histogram at bin i = DN, 
FRi = frequency of reference histogram at bin i = DN, and 
q = quantization level (i.e., number of DN bins). 

The HAM routine represents a modifi cation of the 
original formula for the spectral angle mapper algorithm used 
in classifi cation of hyperspectral image data, in which FS is an 
unknown histogram curve and FR is a reference/training curve 
(Park et al., 2007). The combination of feature inputs can 
potentially improve classifi cation results. Therefore, the curve 
matching scores for the Red and NIR bands combined were 
computed and compared using the arithmetic, geometric, and 
Pythagorean means as follows:

 μArithmetic = (Red + NIR)/2 (3)

 μ Geometric = (Red A NIR)1/2 (4)

 μ Pythagorean = (Red2 + NIR2)1/2 (5)

where Red and NIR = histogram matching or Nearest 
Neighbor score derived for the red and NIR waveband data, 
respectively.

The test image object data were also classifi ed with the 
nearest neighbor algorithm, a traditional classifi er. Objects 
means and standard deviations were used as inputs. We meas-
ured similarity by the Euclidean distance (d(fs,fr)):

 d fs ff rfffsff ) ( )FRFF–FSFF FRF

TABLE 1. NUMBER AND SIZE OF TEST AND TRAINING REGIONS OF INTEREST (ROI) 
PER CLASS; TOTAL AREAL EXTENT OF THE STUDY AREA IS 152 KM2

Land-Cover / 
Land-Use 
Classes

No. 
Training 

ROIs

Area 
Covered by 

Training 
ROIs (km²)

No. 
Testing
ROIs

Area 
Covered 
by Test 

ROIs (km²)

Commercial 3 0.04 22 0.18

School 3 0.27 10 0.51

Industrial 
Park 3 0.12 27 1.49

Multiple 
Family 
Residential 3 0.07 30 1.41

Offi ce High 
Rise 3 0.07 27 0.49

Park 6 0.19 20 0.61

Single Family 
Residential 3 0.04 47 0.95
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58.0 percent to 71.6 percent for HAM, and 27.0 percent to 
73.0 percent for NN. The median scores are 67.21 percent, 
67.76 percent, and 47.0 percent for the HMRSSDA, HAM, and NN 
algorithms, respectively. The histogram matching algorithms 
yielded higher accuracies than the conventional nearest 
neighbor to mean classifi er. Seventy-fi ve percent of all nearest 
neighbor results are below the minimum scores of the his-
togram matching algorithms, and about 95.0 percent (37/39) 
of them have overall accuracy estimates of less than 65.0 
percent. The combination of the Red and NIR bands produced 
higher accuracy results as compared either single band, and 
histograms with fewer bin sizes generally yielded higher 
accuracies. The spatial resolution of 2.5 m also tended to yield 
the highest scores.

Classifi er Infl uence on Classifi cation Accuracy
A primary objective of this study was to assess how well his-
togram matching classifi ers performed relative to the standard 
nearest neighbor to mean classifi er. As shown in Figure 4, 
both histogram matching algorithms performed better than the 
Nearest Neighbor classifi er when spatial resolutions, bin size, 
and input band combinations were the same. The mean kappa 
accuracy for all resolutions and bin sizes are 56.6 percent for 
the HMRSSDA, 58.9 percent for the HAM and 31.1 percent for 
NN. However, the single highest overall accuracy value of 72.7 
percent was produced with the Nearest Neighbor classifi er, 
with the Quadratic waveband mean combination formula at a 
spatial resolution of 2.5 m.

Of the two histogram matching algorithms tested, the HAM 
outperformed the HMRSSDA 53/60, or 88.0 percent of the time. 
The greatest difference of 8.4 percent in accuracy between the 
two algorithms occurred at 5 m, with the bin size of 128, and the 

Results
Histogram Curve Characteristics 
Figures 3a, 3b, and 3c present the mean value histogram 
curves for the red and NIR wavebands from training data 
for all seven classes and associated subclasses. The SFR and 
Park classes are normally distributed while the Commercial, 
Industrial Park, MFR, School, and OHR classes have non-
normal histograms. MFR histograms are broad and positively 
skewed. School histograms are highly skewed to the left, 
broad and dispersed. Their curves have a staircase like shape 
with a main peak occurring at about DN value of 180. 

Although both the Park and SFR classes have reasonably 
symmetric histograms, their DN value distributions are different. 
The SFR distribution is platy-kurtic, whereas the Park distribu-
tions are meso- or even lepto-kurtic. The histograms of the Park 
class exhibited considerable variability in their shape. The 
Park class was therefore represented by two sub-classes with 
different training curves: Park 1 and Park 2. Both histograms are 
normally distributed, with peaks occurring at different digital 
number values, approximately 80 for Park1 and 140 for Park 2.

Among the classes with non-normal histograms, the 
Industrial Park and OHR exhibit similar shapes. Their histo-
grams are platy-kurtic and tend to be bimodal, although some 
have more than two modes. The Commercial class histograms, 
however, have three general peaks, are broad and highly 
dispersed. Histogram curve shapes are consistent between the 
Red and NIR band for all classes.

Overall Classifi cation Results
The ranges of overall classifi cation accuracy results var-
ied between 57.0 percent to 70.0 percent for HMRSSDA, 

Figure 3. (a) and (b) red waveband histograms for training objects, and (c) NIR waveband histograms for 
training objects.

(a)

(c)

(b)
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quadratic combination formula. The results were signifi -
cantly different based on the kappa z-test at the 0.05 level 
of signifi cance with a sample size of 183 (z = 2.04 > 1.96). 

Quantization-level Infl uence on Classifi cation Accuracy
Classifi cations based on histogram matching routines were 
performed with four bin sizes: 256, 128, 64, and 32. The 
highest scores were achieved at 5 bit quantization (32 bins) 
19 out of 30 (63.3 percent) times and was highest or shared 
the highest scores 80.0 percent (24/30) of the time. At 6-bit 
quantization (64 bins) the highest accuracy was achieved 
26.7 percent (8/30 - four singles and four ties) of the time. 
The greatest difference of 5.2 percent in result due to bin 
size only occurred at 5 m, with the HMRSSDA matching algo-
rithm and the geometric combination formula. The results 
are not signifi cantly different based on the z-test at the .05 
level of signifi cance (z = 0.83 < 1.96). While the highest clas-
sifi cation accuracy of 65.3 percent of the study was achieved 
for histograms with 64 and 128 bins, 32 bin histograms 
yielded a majority of the highest classifi cation accuracies. 
When considering individual classes, the bin sizes did not 
generally affect results. The reduction of bin sizes smoothes 
out spikes in histograms which are then effi ciently classifi ed 
by the algorithms.

Waveband Infl uence on Classifi cation
The classifi cation of image object histograms was performed 
with the individual red and NIR bands and a combination 
of the two. Figure 5 depicts the results of the comparison of 
these band inputs. When holding spatial resolution, quantiza-
tion level, and classifi er constant and considering the Non-
residential urban class as a single class, classifi cation results 
for the red band consistently ranked higher than that for the 
NIR. The red band yielded higher accuracies 93.3 percent 
(28/30) of the time than the NIR band. The greatest difference 
of 19.1 percent between the results occurred at 2.5 m, with the 
nearest neighbor classifi er based on the standard deviation. 
With a sample size of 183, this difference was signifi cant at 
the 0.05 level based on the KHAT z-test (z = 3.16 < 1.96). 

All three different formulae for combining red and NIR 
bands outperformed either single band. The arithmetic mean 
outperformed the geometric mean formula 60.0 percent 
(18/30) of the time, while the Pythagorean outperformed 
both the arithmetic and geometric 70.0 percent (21/30) and 
86.7 percent (26/30) of the time, respectively. The products 
based on the Pythagorean combination formula yielded most 
of the highest classifi cation accuracies based on the KHAT 
statistics, followed by the arithmetic and geometric formula, 
respectively.

Individual Class Accuracy and Separability
The Commercial and OHR classes have high conditional kappa 
scores with the HMRSSDA and HAM algorithms while their 
scores are generally low when classifying with the standard 
nearest neighbor measure. Fifty percent of all Industrial Park 
scores range between 40 to 50.0 percent for both histogram 
matching measures while they are below 30.0 percent for 
the nearest neighbor classifi er. The Park class was accurately 
classifi ed with all three algorithms. It was uniquely separable 
in most cases. Results for the school class were consistent 
between histogram matching algorithms: 50.0 percent of all 
results were between 47.0 percent and 57.0 percent. Its con-
ditional kappa scores ranged from below 0.0 percent to above 
80.0 percent when classifying with the nearest neighbor. The 
MFR and SFR classes also exhibited consistent and higher accu-
racies with the histogram matching classifi ers compared to the 
nearest neighbor measure.

arithmetic combination formula. With a sample size of 183, the 
difference is not signifi cant based on the z-test (z = 1.33 < 1.96). 
Thus, the smallest difference is also not signifi cant. Table 2 
compares the performance of the histogram matching algorithms 
relative to the three spatial resolutions. The biggest difference of 
3.7 percent occurred with 5 m resolution images where histo-
grams are coarser. This suggests that the HAM algorithm is less 
sensitive to noise present in histograms.

Spatial Resolution Infl uence on Classifi cation Accuracy
The smoothness of histograms increases with an increase in 
spatial resolution; histograms are smoother at 0.5 m than at 
5 m due to the larger sample sizes associated with a greater 
number of pixels per ROI. It was hypothesized that higher 
spatial resolutions would yield higher accuracy results for 
histogram matching algorithms. Object classifi cations based 
on 2.5 m spatial resolution images yielded the highest accu-
racies 77.3 percent (41/53) of the time as compared to those 
from the highest (0.5 m) resolution images. The greatest 
difference of 33.6 percent in accuracy due to different spa-
tial resolution inputs occurred with the nearest neighbor 
algorithm based on the power mean combination formula. 
This difference is signifi cant based on the z-test at the 5.0 
percent signifi cant level (z = 5.19 > 1.96). Moreover, the 
2.5 m outperformed the 5 m spatial resolutions 71.7 percent 
(38/53) of the time. The greatest difference of 25.3 percent 
was also signifi cant based on the z-test (z = 3.69 > 1.96). It 
occurred with the nearest neighbor algorithm based on the 
power mean combination formula. Finally, classifi cation 
results for the 5 m spatial resolution products were higher 
than those in the 0.5 m 58.5 percent (31/53) of the time. 
The greatest difference of 14.1 percent in accuracy results 
between these two spatial resolutions (5 m and 0.5 m) 
occurred with the nearest neighbor algorithm based on the 

Figure 4. Comparison of frequency distribution of overall 
accuracy fi gures for the three classifi cation measures.

TABLE 2. MEAN OVERALL ACCURACY RESULTS FOR HISTOGRAM 
MATCHING CLASSIFIERS

Spatial Resolution HMRSSDA HAM

0.5 m 64.5% 65.6%

2.5 m 65.5% 66.5%

 5 m 63.9% 66.6%
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that curve matching classifi ers could yield higher classifi ca-
tion accuracies than a nearest neighbor classifi er for the clas-
sifi cation of classes with complexly-shaped histograms, it was 
found in this study that both histogram matching measures 
that were tested consistently yielded more accurate classifi -
cation results than a standard nearest neighbor with results 
that were signifi cantly different based on the kappa statistics. 
Between the histogram matching algorithms, the HAM yielded 
the highest results although the differences between the two 
algorithms were not signifi cantly different based on the kappa 
statistics. 

Next, a question on the effects of spatial resolutions on 
classifi cation results was also addressed. Results show that 
images with spatial resolution of 2.5 m yielded classifi cations 
with the highest accuracies. The 5 m spatial resolution pro-
duced the next highest accuracies followed by 0.5 m. Further 
research could incorporate data sets with spatial resolutions 
higher than 0.5 m and lower than 5 m to further evaluate 
the effects of spatial resolution on accuracy results of curve 
matching classifi ers and nearest neighbor.

Moreover, histogram curve matching classifi cations were 
tested at four quantization levels: 256, 128, 64, and 32. The 
5-bit quantization (32 bins) generally yielded the highest clas-
sifi cation accuracies. In general, histograms with fewer bins 
yielded higher classifi cation accuracies. This is probably due 
to the generalization (i.e., smoothing) of the curves that occur 
when bins are aggregated. 

A combination of band inputs produced higher accuracy 
results than single bands. This suggests that the use of more 
information channels is preferable. The choice of band combi-
nation formula is also important as some consistently generate 
higher results that others. Finally, we found that classes with 
complex histogram shapes such as commercial or OHR were 
better classifi ed with histogram matching classifi ers as com-
pared to the nearest neighbor.

Training objects were selected visually and interactively 
and fi nalized upon analyzing the histograms curves of all ROIs 
belonging to a class. In a normal classifi cation setting, only a 
sample of the data is analyzed, and the characteristics of that 
sample are applied to the classifi cation of the whole data set. 
A similar approach could be used in the selection of training 
histograms. An interpreter could select few ROIs for a par-
ticular class based on interpretation of the study area and use 
them to create mean curve(s) for that class. In case it appears 
that subclasses are needed, histograms could be grouped 
based on a quantitative measure or tool. A dendrogram could 
be such a tool.

Histogram matching algorithms were evaluated by 
comparing kappa accuracy results. While comparing the 
effectiveness of spectral similarity measures for the analy-
sis of hyperspectral imagery; van der Meer (2006) used the 
probability of spectral discrimination (PSD) and the power 
of spectral discrimination (PWSD) to assess the effectiveness 
of the spectral similarity measures. More robust measures 
such as PSD and PWSD should be tested in future studies that 
compare histogram matching algorithms. Also, the use of the 
kappa coeffi cient as a measure of assessing the accuracy of 
remotely sensed data classifi cation is not universally accepted 
because the degree of chance agreement may be overestimated 
(Foody, 1992; Pontius and Millones, 2011). However, one of 
the advantages of the kappa coeffi cient is its ability to test for 
signifi cance between two error matrices.
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exhibit bimodal, non-normal histograms while the histograms 
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and MFR histogram curves are weakly Gaussian and exhibit 
various degrees of skewness. 

The next research question dealt with the performance 
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Figure 5. Comparison of overall accuracy for various band 
inputs and modes of combining band inputs.
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