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Abstract

In this paper, we introduce a new spatially constrained clustering prob-
lem called the max-p-regions problem. It involves the clustering of a set of
geographic areas into the maximum number of homogeneous regions such
that the value of a spatially extensive regional attribute is above a prede-
fined threshold value. We formulate the max-p-regions problem as a mixed
integer programming (MIP) problem, and propose a heuristic solution.
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1 Introduction

According to Fischer (1980), a homogeneous region consist of a set of spa-
tially contiguous areas which show a high degree of similarity regarding a
set of attributes; e.g., degree of diversity, per capita income, level of quality
of life, etc. This type of region is different from a functional region in the
sense that the latter consists of spatially contiguous areas with a high degree
of interdependence; e.g., high levels of commuting flows or commercial trade
between them.1

The problem of aggregating areas into homogeneous regions is referred
to by a host of different names, including region-building (Byfuglien and
Nordgard, 1973), conditional clustering (Lefkovitch, 1980), clustering with
relational constraints (Ferligoj and Batagelj, 1982), constrained clustering
(Legendre, 1987), contiguity constrained clustering (Murtagh, 1992), re-
gional clustering (Maravalle and Simeone, 1995), contiguity constrained clas-
sification (Gordon, 1996), regionalization (Wise et al., 1997), or clustering
under connectivity constraints (Hansen et al., 2003).2 The literature on
this topic focuses on particular aspects of the problem such as strategies
to ensure spatial contiguity of each region, ways to measure homogeneity,
strategies to explore the solution space efficiently, and ways to check for
solution feasibility.

From this basic problem (i.e., to aggregate areas into homogeneous re-
gions) other sub-branches have emerged, which add new constraints with
the aim to provide solutions to specific requirements in empirical applica-
tions. The most important constraints are: (a) shape of the regions (e.g.,
compactness, similarity to existing solutions); (b) equality of an attribute
values across the regions (e.g., population equality); and (c) membership
constraints (e.g., boundary integrity3). Each one of these additional con-
straints has generated a number of contributions suggesting different formu-
lations and solution strategies.

Although models for solving either the problem of basic homogeneous
regions or the extended versions of this problem have been under develop-
ment for the past four decades, the dramatic increase in the availability of

1Semple and Green (1984) refers to these two types of regions as uniform and functional
regions.

2For literature reviews on constrained clustering, see Murtagh (1985), Gordon (1996)
and Duque et al. (2007). See also Legendre (1987) for a discussion about why constrained
clustering is appropriate and necessary.

3This topic includes constraints that avoid solutions with regions being split by natural
or artificial barriers. It also includes constraints that force a subset of areas to be assigned
to the same homogeneous region.
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highly disaggregated spatial data and computational resources provides the
opportunity for regional scientists to explore new applications of spatial ag-
gregation models. In this process, new challenges appear that need to be
addressed with new formulations. One of those challenges is related to the
definition of the number of homogeneous regions to be designed (the scale
problem); many practitioners know that they need to aggregate areas into
homogeneous regions but they do not know how many regions they should
create.

While there is a wide range of methods for finding an appropriate level
of aggregation,4 choosing among these methods is complicated by a number
of factors: (a) the performance of those methods is data dependent; (b)
the choice of the number of regions is complicated due to a wide variety
of methods available ; and, (c) the correct selection of the method requires
a deep knowledge of the properties of each one of the available options.
This situations has created a “barrier” for the use of the available spatial
clustering techniques in practice.

Our experience with spatial aggregation models has shown us that in
many empirical applications the researcher does not want to use spatial
clustering as a tool for summarizing information or finding the real number of
clusters in the data, but as a tool for designing suitable regions for analysis.
In this scenario, although the researcher does not know how many regions
(clusters) need to be designed, she may know a condition that must be
satisfied by every region in order to make them suitable for the analysis.
That information can then be used as a way to endogenize the number of
regions.

This paper introduces the exact formulation and a solution method for
a new type of spatially constrained clustering that we coined as the max-
p-regions problem. In brief, the max-p-regions involves the aggregation of
n areas into an unknown maximum number of homogeneous regions, while
ensuring that each region satisfies a minimum threshold value imposed on
a predefined spatially extensive attribute (e.g., number of households per
region, area per region, population per region, etc.).

A unique feature of this model is that the number of regions is modeled
as an endogenous parameter. Another important characteristic of this for-
mulation is that, opposite to many existing approaches, the way the model
satisfies the spatial contiguity constraint does not rely on imposing con-

4Milligan and Cooper (1985) evaluate 30 procedures for determining the number of
clusters. The authors refer to this decision as “the dilemma of selecting the number of
clusters”. See also Gordon (1999) for a discussion on this topic.
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straints on the shape of the regions (i.e., maximal compactness); instead,
the max-p-regions model lets data dictate the shape of each region, which is
a desirable characteristic in many empirical applications in regional science.

One of the most promising uses of the max-p-regions model is the defi-
nition of study regions. For example, in the statistical analysis of rates for
small area estimation (i.e., crime rates, disease rates, unemployment rates)
the precision with which the underlying rate can be measured is inversely
related to the size of the population within the enumeration district. It is
often desirable to combine small contiguous units so as to increase the pre-
cision of the rate estimation. In these cases, the max-p-regions algorithm
can be used to design new study regions where (a) the loss of observations
is minimized because it seeks to perform the minimum number of spatial
aggregation; (b) the degree of aggregation bias is minimized, because in-
traregional homogeneity is maximized; and, (c) the new regions ensure valid
statistical inference. It is also important to note that the max-p-regions
model could be used as a way to avoid subjectivity in the definition of both
scale (number of regions) and aggregation (shape of the regions) in applied
analysis.

The remainder of the paper is organized as follows. A formal state-
ment of the max-p-regions problem is formulated in the next section. A
literature review is presented in Section 3. The exact formulation of the
max-p-regions problem is introduced in Section 4. The heuristic algorithm
for solving the max-p-regions problem, including some computational expe-
rience, is presented in Section 5. The article concludes with a summary and
recommendations for future work.

2 Problem statement

Areas:

Let A = {A1, A2, ..., An} denote a set n = |A| areas.

Attributes:

Let Aiy denote the attribute y of area Ai, where y ∈ Y = {1, 2, ...,m} with
m ≥ 1; and li denote a spatially extensive attribute of area Ai.
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Relationship:

Let d : A × A → R+ ∪ {0} be the dissimilarity between areas based on
the set of attributes Y such that dij ≡ d(Ai, Aj) satisfies the conditions
dij ≥ 0, dij = dij and dij = 0 for i, j = 1, 2, . . . , n. Distance funtions
can also be utilized; i.e., dij can also satify the subadditivity, or triangle
inequality, condition: dij ≤ dik + dkj for i, j, k = 1, 2, . . . , n.

Let W = (V,E) denote the contiguity graph associated with A such that
vertices vi ∈ V correspond to areas Ai ∈ A and edges {vi, vj} ∈ E if and
only if areas Ai and Aj share a common border. For the max-p-regions
model W must be a connected graph.

Feasible Partitions of A:

Let Pp = {R1, R2, ..., Rp} denote a partition of areas A into p regions with
1 ≤ p ≤ n such that:

|Rk| > 0 for k = 1, 2, ..., p;
Rk ∩Rk′ = ∅ for k, k

′
= 1, 2, ..., p ∧ k 6= k

′
;⋃p

k=1Rk = A;∑
Ai∈Rk

li ≥ threshold

{
for k = 1, 2, ..., p, and
threshold ∈ R+ ∪ {0}|0 ≤ threshold ≤

∑
Ai∈A li;

W (Rk) is connected for k = 1, 2, ..., p.

Let Π denote the set of all feasible partitions of A.

Evaluation criterion for a feasible partition Pp ∈ Π:

h(Rk) =
∑

ij:Ai,Aj∈Rk,i≤j

dij Heterogeneity of region k with Rk ∈ Pp;

H(Pp) =
p∑

k=1

h(Rk) Total heterogeneity of partition Pp ∈ Π.

The max-p-regions problem may be formulated as:
Determine P ∗p ∈ Π such that |P ∗p | = max(|Pp| : Pp ∈ Π), and

@Pp ∈ Π : |Pp| = |P ∗p | ∧H(Pp) < H(P ∗p )

Next we present a basic example to illustrate an optimal solution for the
max-p-regions problem. Figure 1 shows a regular lattice with nine square
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areas which are grayscale-coded according to y, say the average price of a
house in an area. We also have the number of houses per area as our spatially
extensive attribute l. The objective is (1) to find the maximum number of
contiguous regions, p, needed to group the nine areas in such a way that
each region contains at least 120 houses (i.e., threshold = 120); and (2) to
find, within all solutions with p regions, the solution with the least amount
of regional heterogeneity based on y.5

Figure 1: Example of input data: y = average price, and l = number of
houses.

Table 1: Construction of the evaluation criterion H (P ∗2 )
Expressions Values

h (R1 = {A1, A2, A3, A5, A6})
d1,2 +d1,3 +d1,5 +d1,6 +d2,3 +d2,5 +d2,6 +d3,5 +d3,6 +
d5,6 =
50.3 + 80.6 + 60.7 + 100.2 + 30.3 + 10.4 + 49.9 + 19.9 +
19.6 + 39.5 = 461.4

h (R2 = {A4, A7, A8, A9})
d4,7 + d4,8 + d4,9 + d7,8 + d7,9 + d8,9 =
69.7 + 10.3 + 8.2 + 59.4 + 61.5 + 2.1 = 211.2

H (P ∗2 ) = h(R1) + h(R2) 461.4 + 211.2 = 672.6

Table 1 presents the components of the evaluation criterion for the op-
timal partition, H(P ∗p ). According to the definition of the max-p-regions
problem, this optimal solution (P ∗p ) implies the following in sequential or-
der.

1. It is not possible to have more than two regions with at least 120
houses each.

2. There is not another feasible solution with two regions with a total
regional heterogeneity, H(Pp), lower than 672.6.

5For this example we assume dij = |yi − yj |; e.g., d1,2 = |350.2− 400.5| = 50.3.
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The bold borders in Figure 2 outline the resulting regions. The regions
capture the spatial patterns by aggregating areas with similar values for
variable y. Finally, both regions have more than 120 houses each: 148
houses in region R1 and 123 in region R2.

Figure 2: Optimal solution for a threshold of 120 houses per region.

3 Literature review

In the literature, there are three types methods for designing homogeneous
regions. The first type of method designs the regions in two stages (Open-
shaw, 1973; Fischer, 1980). The first of the two stages starts by applying a
conventional clustering algorithm to the areas without taking into account
the geographical location of the areas being aggregated. In this stage, the
focus is placed on creating clusters, not regions, of areas that are homoge-
neous in terms of a set of attributes, regardless of geography. The second
of the two stages defines regions as subsets of spatially contiguous areas
assigned to the same cluster. With this method the number of resulting
regions heavily depends on the spatial patterns of the attributes used for
calculating intraregional homogeneity (Openshaw and Rao, 1995).

The second type of method consists of constructing homogeneous re-
gions by including the x and y coordinates of the centroids of the areas as
two additional attributes in a conventional clustering algorithm (Webster
and Burrough, 1972; Murray and Shyy, 2000). This is an indirect way to
force geographically nearby areas to be assigned to the same cluster. In
this case, the resulting regions will tend to be geographically compact and
therefore spatially contiguous. Spatial contiguity in the final regional solu-
tion depends on the weight given to the geographical attributes (x and y
coordinates) compared to the weights given to the other attributes (Wise
et al., 1997). An increase in the weight of the geographic coordinate at-
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tributes in the clustering procedure will increase the chances of obtaining
spatially contiguous regions; As a trade-off, this increase in the geographic
distance weighting compared to the weighting of the other attributes will
detract from meeting the objective of obtaining intraregional homogeneity
for the other attributes. One of the main challenges when applying this
strategy it to decide how geographical and non-geographical attributes will
be combined and weighted (Webster and Burrough, 1972; Cliff et al., 1975;
Perruchet, 1983).6

For this paper, the key problem with the first two types of methods
is that they do not include a procedure for ensuring the spatial contiguity
of the regions. In both cases, this condition must be revised a posteriori.
Because of the simplicity of their formulations, a key strength of these types
of methods lies in their ability to handle large numbers of areas.7

A third type of method for clustering areas, our focus, guarantees spatial
contiguity amongst the areas of each resulting region by explicitly including
a spatial constraint within the regionalization procedure. The advantage of
this strategy is that the objectives of spatial contiguity and intraregional
homogeneity do not compete. Information about the neighboring structure
of the set of areas is used only as an input for limiting the number of feasible
solutions, and within this limited number of spatially contiguous solutions is
intraregional homogeneity assessed. There is a wide range of strategies for
guaranteeing spatial contiguity based on information about the neighbouring
structure. They can be classified into five categories: (a) Adapted hierarchi-
cal clustering algorithms are where two clusters are merged only if they share
a common border (Lankford, 1969; Byfuglien and Nordgard, 1973; Margules
et al., 1985); (b) Seeded regions are where each region starts growing from an
initial area from which other neighbouring areas are attached (Openshaw,
1977a); (c) Modification of an initial solution works by moving areas be-
tween regions while preserving spatial contiguity (Openshaw and Rao, 1995;
Ferligoj and Batagelj, 1982); (d) Graph theory-based algorithms are where
the areas and their neighborhood structure are represented as a connected
graph that needs to be broken into connected subgraphs, while maximizing
some intraregional homogeneity criterion (Maravalle et al., 1997; Hansen
et al., 2003; Assunção et al., 2006); and, (e) Formulation of exact optimiza-

6Horn (1995) and Martin et al. (2001) point out that the final solution is also sensitive
to the methodology applied to define the centroids of the areas.

7The number of areas to aggregate determines computational time cost and is an
important factor when selecting the aggregation method. See Cliff and Hagget (1970), Cliff
et al. (1975), and Keane (1975) for a discussion on the complexity of spatially constrained
clustering.
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tion models are where a subset of constraints are responsible for satisfying
the spatial contiguity of each region (Murray and Shyy, 2000; Duque et al.,
2010).8

The use of one method or another is not an arbitrary decision. For
those problems where the shape of the regions should be guided by the spa-
tial distribution of the variables, the use of conventional clustering with x
and y coordinates are not appropriate because they always tend to gener-
ate circular (compact) regions. Also, problems that do not require nested
aggregations at different scales will not ensure optimality by using adapted
hierarchical clustering algorithms because with these methods the solution
at one scale is conditioned to the solutions obtained at lower scales (Bunge,
1966). The method proposed in this paper satisfies the contiguity con-
straint in two ways. First, in the exact formulation we design constraints
that borrow concepts from graph partitioning. And second, for the solution
method, we design an algorithm that constructs feasible solutions, based on
the seeded regions strategies, which are iteratively modified while searching
for improvements on the evaluation criterion.

4 The exact formulation of the max-p-regions model

Parameters:

i, I = Index and set of areas, I = {1, · · · , n} ;
k = index of potential regions, k = {1, · · · , n} ;
c = index of contiguity order, c = {0, · · · , q} ,with q = (n− 1);

wij =
{

1, if areas i and j share a border, with i, j ∈ I and i 6= j
0, otherwise;

Ni = {j|wij = 1} , the set of areas that are adjacent to area i;
dij = dissimilarity relationships between areas i and j, with i, j ∈ I and

i < j;
h = 1 + blog(

∑
i

∑
j|j>i dij)c, which is the number of digits of the

floor function of
∑

i

∑
j|j>i dij , with i, j ∈ I;

li = spatially extensive attribute value of area i, with i ∈ I;
threshold = minimum value for attribute l at regional scale.

Decision variables:
8These methods for ensuring spatial contiguity are required in a wide range of related

problems like political districting (Williams, 1995), school districting (Caro et al., 2004),
sales districting (Zoltners and Sinha, 1983), among others.
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tij =
{

1, if areas i and j belong to the same region k, with i < j
0, otherwise;

xkc
i =

{
1, if areas i is assigned to region k in order c
0, otherwise.

Minimize:

Z =

(
−

n∑
k=1

n∑
i=1

xk0
i

)
∗ 10h +

∑
i

∑
j|j>i

dijtij (1)

Subject to:

n∑
i=1

xk0
i ≤ 1 ∀k = 1, · · · , n (2)

n∑
k=1

q∑
c=0

xkc
i = 1 ∀i = 1, · · · , n (3)

xkc
i ≤

∑
j∈Ni

x
k(c−1)
j ∀i = 1, · · · , n; ∀k = 1, · · · , n; ∀c = 1, · · · , q (4)

n∑
i=1

q∑
c=0

xkc
i li ≥ threshold ∗

n∑
i=1

xk0
i ∀k = 1, · · · , n (5)

tij ≥
q∑

c=0

xkc
i +

q∑
c=0

xkc
j − 1 ∀i, j = 1, · · · , n|i < j;∀k = 1, · · · , n (6)

xkc
i ∈ {0, 1} ∀i = 1, · · · , n; ∀k = 1, · · · , n; ∀c = 0, · · · , q (7)

tij ∈ {0, 1} ∀i, j = 1, · · · , n|i < j (8)

In this formulation potential regions are represented by an index k. We
call then “potential regions” because we do not know a priori how many
regions will be created. When a region k is created it starts from a “root”
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area i, which is an area assigned to region k in order zero (i.e., Xk0
i ). Each

region contains one and only one root area. The other areas are assigned
to one root according to an ordering system that ensures that each area
either is adjacent to the root area, or next to an area that is assigned to
the same region with a smaller order number. The contiguity conditions in
this model represent an extension of the ordered-area assignment conditions
proposed by Cova and Church (2000), who developed such conditions to
enforce contiguity in a site design problem.

The MIP model is formulated as a minimization problem with an objec-
tive function that comprises two terms, one term that controls the number
of regions, p, and a second term that controls the total heterogeneity, H(Pp).
The first term is obtained by adding the number of areas designated as root
areas (Xk0

i ), and the second term adds the pairwise dissimilarities between
areas assigned to the same region. Since the objective function is formulated
as a minimization problem, we multiply the first term by minus one.

These two terms are merged into one single value, but not in the usual
way (i.e., by multiplying each term by a weight). Instead, we merge them
in such a way that there is an implicit hierarchy where the number of p
regions comes first than the goal of reducing total heterogeneity. We achieve
this hierarchy by multiplying the first term by a scaling factor h = 1 +
blog(

∑
i

∑
j|j>i dij)c. For p regions the objective functions starts at −p∗10h.

This value increases when we add the total heterogeneity, but h is big enough
that, regardless the value of this heterogeneity, the objective function will
never reach −(p− 1) ∗ 10h. This formulation has three implications:

• If the algorithm finds a feasible solution with a higher value of p, the
improvement in the objective function will always be big enough that this
new solution will be preferred over any other solution with a smaller value
of p.

• For the same value of p, solutions with lower heterogeneity will be pre-
ferred over solutions with higher heterogeneity.

• The third implication is derived from the two first, and it is that we force
the model to compare only total heterogeneities between solutions with
the same number of regions. Comparing heterogeneities between solutions
with different number of regions would be an unfair comparison.

Constraints (2) establish that a region k should not have more than
one core area. A root area for a region has a defined order of zero (c =
0). Constraints (3) require that each area i be assigned to exactly one
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region k and one contiguity order c. Constraints (4) require that area i
be assigned to region k at order c if and only if an area j exist, in the
adjacent neighborhood of i, that is assigned to the same region k in order
c − 1. Constraints (5) ensure that when a region is created, the value of
the spatially extensive attribute in that region will be above the predefined
threshold value. Constraints (6) select the pairwise dissimilarities that must
be taken into account for calculating the total heterogeneity. Thus, the
binary variable tij = 1 whenever areas i and j are assigned to the same region
k, regardless of the order in which they are assigned. Finally, constraint (7)
and (8) guarantee variable integrity.

In this formulation we do not impose any constraint on the shape of the
regions. Our formulation even allows for regions in the solution that can
appear as concentric rings around, for example, a Central Business District.

The MIP formulation of the max-p-regions model is computationally
expensive. It has 3n+ (n− 1)n2 + nn2−n

2 constraints and (n− 1)n2 + n2−n
2

variables, which quickly make it intractable as the number of areas increases.
However there are some options that can be considered to reduce the size of
the problem:

1. Each area i with li ≥ threshold can be assigned to a different region k by
adding constraints of the type Xk0

i = 1.

2. The upper limit of the indexes k and c can be reduced, because they were
set for very extreme cases. Currently we do not have the decision rules
to define how much the upper limits of k and c can be reduced without
affecting optimality.

3. It is clear that, for a given solution, the objective function will not be
affected if we modify the index of the region, or the order of assignment,
as long as the set of areas per region is not modified. This implies that,
when using the branch and bound method, the optimal solution will exist
in multiple branches of the solution tree. Thus, a Depth-first branching
direction may reduce the solution time.

4. If we take into account that any area can be the root of its region, then
we can apply the “1 in 1” formulation proposed by Rosing and ReVelle
(1986) within the context of flow capturing model. According to this
formulation, a single area i can be arbitrarily assigned to one specific
region without degrading the problem or the objective function. Thus,
we can reduce computation time by adding the constraint X1,0

1 without
affecting optimality.
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To illustrate the complexity of the max-p-regions we solved nineteen
problems with different number of areas (n) and threshold values (threshold).
The attributes y, from which the dissimilarities dij are calculated, were sim-
ulated as spatial autoregressive (SAR) processes with a spatial autocorrela-
tion parameter ρ = 0.8, mean = 0 , and the rook criterion of contiguity for
constructing the spatial weights. The spatially extensive attributes l where
generated from a discrete uniform distribution between 10 and 15. Table 2
summarizes computational results. Only four problems were solved to opti-
mality, and feasible solutions were obtained for six problems. For the other
nine problems CPLEX did not find a feasible solution after four hours. It is
clear that with the commonly available computational power we currently
need to use heuristics to solve meaningfully large problems.9

Table 2: Computational experience with CPLEX
problem n threshold solution p time (sec.)

1 9 28 −2.931 · 102 3 0.33
2 9 38 −1.877 · 102 2 0.19

3 16 51 −2.965 · 103 3 1257.25
4 16 68 −1.948 · 103 2 198.86

5 25 52 −6.069 · 103 6 †
6 25 79 −3.984 · 103 3 †
7 25 105 −2.920 · 103 3 †
8 36 53 −9.094 · 104 7 †
9 36 68 −7.087 · 104 5 †
10 36 120 − − †
11 49 54 − − †
12 49 65 − − †
13 49 82 − − †
14 49 109 −6.027 · 104 6 †
15 64 52 − − †
16 64 60 − − †
17 64 64 − − †
18 64 84 − − †
19 64 140 − − †

∗ Optimal (by CPLEX).
† Run stopped after 4 h.
− No solution found.

9Results are based on using ILOG CPLEX 11.2 executed on a Dell Precision T3400
computer running the Windows XP-64bits operating system equipped with 8 GB RAM
and a 2.99 GHz Intel Corel 2 Extreme processor.
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5 Heuristic solution methods

In this section we propose a heuristic solution for the max-p-regions prob-
lem. The heuristic is presented in Pseudocode 1 and comprises two phases,
a construction phase and a local search phase. The construction phase gen-
erates a set of feasible solutions, and the local search phase applies iterative
modifications to those feasible solutions in order to improve the evaluation
criterion. At the end, the heuristic returns the best solution found.

Pseudocode 1: Max-p-regions
A : Set of areas,
l : Spatially extensive attribute of areas,
d : Pairwise dissimilarities between areas,
W : Neighbourhoods,
threshold : Constraint on attribute l at regional level.

P best
p = ∅, best partition.
het =∞
Π = ∅, set of feasible partitions.
Ψ = ∅, set of partitions before enclaves assignment.
maxP = 0, maximum number of regions.
Construction Phase:
for i = 1, 2, · · · ,maxitr

do



ψ, ε,A′ = GrowRegions(A, l, d,W, threshold)
p = |ψ|,number of regions in partition ψ
if p > maxP

then
{

Ψ = ψ
maxP = p

if p = maxP
then

{
Ψ = Ψ ∪ ψ

if p < maxP
then

{
pass

for ψ in Ψ

do
{
P feasible = AssignEnclaves(ψ,Aa, ε, d,W )
Π = Π ∪ P feasible

Local Search Phase:
for P feasible in Π

do


P current

p = LocalSearch(P feasible)
if H(P current

p ) < het

then
{
het = H(P current

p )
P best

p = P current
p

return P best
p
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5.1 Construction phase

The construction of a feasible solution is divided in two phases: growing
phase (see Pseudocode 2), and enclaves assignment (see Pseudocode 3).
During the growing phase the algorithm selects at random an unassigned
area, which is the “seed area” of a growing region. Then, neighbouring
unassigned areas are added to the initial seed until the region reaches the
minimum threshold value.10 Next, the algorithm selects a new seed area to
start growing a new region. This process is repeated until it is not possible
to grow new regions that satisfy the threshold value. Those areas that
are not assigned to a region are known as “enclaves.” At the end of the
growing phase, the algorithm finished with a set of partial solutions where
each solution is composed by a set of growing regions and a set of enclave
areas.

The number of feasible growing regions may change from run to run. For
this reason the algorithm repeats this procedure multiple times (maxitr) and
keeps only those solutions where the number of growing regions is equal to
the maximum number of regions obtained in prior iterations. Each partial
solution is then passed to the process of enclaves assignment. In this phase
each enclave area must be assigned to one neighbouring growing region ac-
cording to a measure of similarity.11 Once all the partial solutions have
passed through the enclave assignment process, the algorithm has a set of
feasible solutions, all of them with the same number of regions.

10The strategy of creating regions from the selection of an initial area appeared in
the early 60s with Vickrey (1961) for solving districting problems. Variations of this
methodology have been proposed by Thoreson and Littschwager (1967), Gearhart and
Liittschwager (1969), Taylor (1973), Openshaw (1977a), Openshaw (1977b), and Rossiter
and Johnston (1981).

11This implies that the enclave assignment process do not modify the number of regions.
It just ensures the exhaustive assignment of areas to regions.



The max-p-regions problem 15

Pseudocode 2: GrowRegions
A, l, d,W, threshold

Comment: Grow regions from initial seeds such that the value of attribute l
in each region is above threshold.

Ψ = ∅, set of partitions before enclaves assignment.
ε = ∅, set of enclave areas.
Au = A, set of unassigned areas.
Aa = ∅, set of assigned areas.
while Au 6= ∅

do



Ak = select, at random, one area from Au.
Au = Au − {Ak}, remove area Ak from set Au.
Aa = Aa ∪ {Ak}, add area Ak to set Aa.
if lk ≥ threshold

then
{
Rk = {Ak}, area Ak becomes a region by itself.
Ψ = Ψ ∪ {Rk}, add region Rk to partition Ψ.

if lk < threshold

then



Rk = {Ak}, start a growing region seeded at area Ak.
N = neigbours(Ak)−Aa, set of neighbouring unassigned

areas of Ak.
L = lk, value of attribute l in area Ak.
feasible = 1
while T < threshold

do



if N 6= ∅

then



Ai = area in N that minimizes the
greedy adaptative function g(Ai) =∑

j∈Rk
dij

Rk = Rk ∪ {Ai}
N = (N − {Ai}) ∪ neigbours(Ai)−Aa

T = T + li
Au = Au − {Ai}
Aa = Aa ∪ {Ai}

if N = ∅ and T < threshold

then


ε = ε ∪Rk

feasible = 0
Au = Au ∪Rk

Aa = Aa −Rk

break, leave the while loop.
if feasible = 1
then Ψ = Ψ ∪ {Rk}

return Ψ, ε, Aa
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Pseudocode 3: AssignEnclaves
ψ,Aa, ε, d,W

Comment: Assign each enclave in ε to one growing region in partition ψ.

while ε 6= ∅

do



Ai = select an area Ai in ε that shares a border with at least one area
in Aa.

η = regions η ⊂ ψ that share border with area Ai.
Rk = region Rk ⊂ η that minimizes the greedy adaptative function

g(Ai, Rk) =
∑

j∈Rk
dij .

Rnew
k = Rk ∪ {Ai}

ψ = ψ − {Rk} ∪ {Rnew
k }, update region Rk in ψ.

Aa = Aa ∪ {Ai}, update set of assigned areas.
ε = ε−Ai, update set of enclaves.

P feasible = ψ, at this point all the areas have been assigned to a region.
return P feasible

5.2 Local search phase

Each one of these feasible solutions generated during the construction phase
is then improved by applying a local search algorithm. The local search
algorithm iteratively modifies the solution while seeking for improvements
on the evaluation criterion. The set of new solutions that can be obtained
from a current solution is known as the set of neighbouring solutions. There
exist several ways to create this set: (a) moving one area from its regions to
a neighbouring region, (b) swapping areas between two regions, (c) merg-
ing two regions and splitting them into two new regions, or (d) combining
two feasible solutions into a new different feasible solution using genetic al-
gorithms operators. Regardless of the strategy for creating neighbouring
solution, the conditions is that each neighboring solution must generate a
feasible solution.12 In this paper, we define a neighbouring solution as the
new feasible solution obtained by moving one area from its current region
(donor region) to another neighboring region (recipient region). This neigh-
bouring function has been applied by Bozkaya et al. (2003), Openshaw and
Rao (1995), Ricca and Simeone (2008), Blais et al. (2003), and Bong and
Wang (2004) for different types of spatial clustering problems.

We consider three different local search algorithms with the aim of deter-
mining which one performs better for the max-p-regions problem: Simulated

12See Nagel (1965), Sammons (1978) and Horn (1995) for a review on the different
possibilities to generate neighbouring solutions within the context of spatial clustering.
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Annealing (Kirkpatrick et al., 1983), Tabu Search (Glover, 1977) and Greedy
Algorithm.

5.2.1 Simulated annealing

Simulated Annealing is described in Pseudocode 4. This algorithm starts
from an initial feasible solution. Then, a neighbouring feasible solution is
selected at random. If the neighbouring solution is better than the current
solutions, then the move is accepted. If the neighbouring solution does not
improve the current solution, then the transition to the new solution is al-
lowed with an acceptance probability given by the Boltzmann’s equation,
p = e−∆H/T , where ∆H is the change in the evaluation criterion, and T
is the current temperature. At each iteration the temperature T gradually
decreases at a given cooling rate α. Thus, as the algorithm progresses proba-
bility of accepting a non-improving move approaches to zero. The algorithm
stops when T reaches a predefined value ε. The key parameter in this algo-
rithm is the cooling rate α.

Pseudocode 4: Local Search: SimulatedAnnealing
P feasible, T0, α, ε

P
′

p = P feasible, Best local optimum
P current

p = P feasible, Current solucion
T = T0, Initial temperature
while T ≥ ε

do



Select at random a feasible neighbouring solution Pnew
p of P current

p

if H(Pnew
p ) < H(P

′

p)

then
{
P

′

p = Pnew
p

P current
p = Pnew

p

else if e−∆/T > random
then

{
P current

p = Pnew
p

T = αT

return (P
′

p)

5.2.2 Tabu search algorithm

The Tabu search algorithm is presented in Pseudocode 5. This metaheuris-
tic is provided with a good capacity of escaping from local optimal solution
by allowing a temporal worsening of the evaluation criterion with the hope
of discovering a new solution better that the best solution obtained so far.
It starts from an initial feasible solution. From this point the algorithm
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moves to the best neighbouring solution even if this move causes a deteri-
oration of the evaluation criterion (total heterogeneity). To prevent cycles,
the reverse move is forbidden, or tabu, for a predefined number of iterations
(lengthTabu). A tabu move is allowed only if the move yields a solution
better than the best obtained so far (aspirational criterion). The algorithm
stops when a total of convTabu iterations have been performed without
improving the aspirational criterion. According to the literature, the most
critical parameter in this heuristic is the length of the tabu list, lengthTabu.

Pseudocode 5: Local Search: TabuSearch
P feasible, lengthTabu, convTabu

P
′

p = P current
p = P feasible

tabuList = {}
c = 1
while c ≤ convTabu

do



N = Set of feasible neighbors of P current
p

if N = ∅
then

{
c = convTabu

else



for Pnew
p in N

do



if Pnew
p /∈ tabuList

then



if H(Pnew
p ) < H(P

′

p)

then


P

′

p = Pnew
p

P current
p = Pnew

p

c = 1
N = {}
tabuList.add(Pnew

p )

else


P current

p = Pnew
p

c = c+ 1
N = {}

else



if H(Pnew
p ) < H(P

′

p)

then


P

′

p = Pnew
p

P current
p = Pnew

p

c = 1
N = {}
tabuList.add(Pnew

p )

else
{
N = N − Pnew

p

tabuList.pop()
return (P

′

p)
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5.2.3 Greedy algorithm

The Greedy algorithm, described in Pseudocode 6, starts from an initial
feasible solution, and selects a neighbouring solution at random. The neigh-
bouring solution is allowed only if it improves the current solution. The
algorithm stops when there is no neighbouring solution that improves the
current solution. The Greedy algorithm is fast but it may easily get trapped
into a local optimum.

Pseudocode 6: Local Search: Greedy
P feasible

P
′

p = P feasible

flag = 1
while flag

do


N = Set of feasible neighbors of P

′

p that improve the solution
if N 6= ∅
then

{
P

′

p = Randomly selects an element of N
else

{
flag = 0

return (P
′

p)

Two are the main challenges in the application of local search algorithms
to the problem of spatial clustering: (a) to avoid getting trapped in a local
optimal solution, and (b) to find feasible neighboring solutions efficiently.
However, these techniques have been widely applied in other problems that
impose spatial contiguity constraint. For example, simulated annealing has
been applied in political districting by Browdy (1990), Macmillan and Pierce
(1994), Macmillan (2001), and Ricca and Simeone (2008); in zone design
by Openshaw and Rao (1995); and in police districting by D’amico et al.
(2002). Tabu search as been applied in political districting by Bozkaya
et al. (2003), Bong and Wang (2004), and Ricca and Simeone (2008); in
zone design by Openshaw and Rao (1995); and in home care districting by
Blais et al. (2003). And the greedy algorithm has been applied in constrained
clustering by Bodin (1973), Fischer (1980), and Ferligoj and Batagelj (1982);
in political districting by Nagel (1965), Liittschwager (1973), Moshman and
Kokiko (1973), Horn (1995), Ricca and Simeone (2008), and Yamada (2009);
and in zone design by Openshaw (1977a), and Openshaw and Rao (1995).

5.3 Computational experiments

In this section we study the performance of the three local search algorithms
presented above. Table 3 presents the characteristics of the data set utilized
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in the experiments. The irregular lattices were obtained from the sample
data sets available at the GeoDa Center for Geospatial Analysis and Com-
putation.13 We used two different values for ρ, 0.6 and 0.9, in order to
evaluate whether there is a change in the performance of the algorithms at
different levels of spatial dependence.

Table 4 presents the parameters we use for the local search algorithms. In
both algorithms we use different values for the key parameters: in Simulated
Annealing (SA) we use two different values for the cooling rate (α), and in
Tabu Search we use three different values for the length of the tabu list. This
gives a total of six algorithms: Greedy, SA-0.9, SA-0.998, Tabu-10, Tabu-
24, and Tabu-85. All the values for the parameters are based on previous
experiments presented in Ŕıos-Mercado and Fernández (2009), Ricca and
Simeone (2008), Bong and Wang (2004), Blais et al. (2003), Bozkaya et al.
(2003), D’amico et al. (2002), Macmillan (2001), Openshaw and Rao (1995),
Macmillan and Pierce (1994), and Browdy (1990).

Table 3: Characteristics of the data set
Characteristic Values

Lattices regular 20x20 (n = 400)
regular 33x33 (n = 1, 056)
regular 55x56 (n = 3, 080)

Sacramento census tracks (n = 403)
Colombian municipalities (n = 1, 068)

US census tracks (n = 3, 085)

Neighbourhoods type rook

y SAR (ρ = 0.6) and SAR (ρ = 0.9)

l Discrete Uniform [0,100]

threshold (TH) 100, 300, and 500

Table 4: Parameters for local search algorithms
Simulated Annealing

Initial temperature (T0) 1
Cooling rate (α) 0.9 and 0.998
Final temperature (ε) 0.0001

Tabu Search

Tabu list length 10, 24, and 85
Maximum number of non-improving moves 230 ∗ sqrt(p)

In order to make the results comparable, we generate an initial feasible
13http://geodacenter.asu.edu/sdata.
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solution at random for each combination of lattice, ρ, and threshold. Then,
we run the six local search algorithm with the same starting solution. This
process is repeated ten times with different starting solutions. Thus, we
solve a total of 2,160 problems (6 lattices × 2 values of ρ × 3 Threshold
values × 6 algorithms × 10 repetitions).

Our results are presented in tables 5, 6, and 7. Each cell summarizes
the results of solving the ten problems. Table 5 reports the number of times
that each algorithm reached the best known solution. Table 6 reports the
average reduction of the evaluation criterion (total heterogeneity), calcu-
lated as [H(P initial)−H(P final)]/H(P initial)], where H(P initial) is the total
heterogeneity of the initial feasible solution, and H(P final) is the total het-
erogeneity at the end of the local search. Table 7 reports the average running
times in seconds.

The results in Table 5 show that Tabu-85 reached the best known so-
lution 71.11% of the cases, follow by Tabu-24 with 23.61%, Tabu-10 with
16.94%. The SA-0.998 and Greedy algorithms are significantly inferior with
an 0.83% success rate, followed by SA-0.9 with 0.56%. Our results suggest
that the larger the length of the tabu list, the higher the possibilities are to
get the best solution. This finding is in line with Bozkaya et al. (2003) who
found the best performance of Tabu Search for a list length of between 80
and 100. It is also important to note that longer tabu lists do not imply a
significant change in the running times.

A comparison of Simulated Annealing with Tabu Search results in tables
6 and 7 shows that, on average, to get an additional reduction of 0.73% in
the total heterogeneity using Tabu Search causes the running time to an
increase by a factor of 4.84. Depending on the context of the application,
this trade-off can be very expensive.

Contrary to our expectations, there is not a significant difference in
the performance of the algorithms at different levels of spatial dependence;
i.e., having clearer spatial patterns neither helps the algorithms to converge
faster nor to reach a higher reduction of the initial objective function value.
This finding implies that it is not necessary to consider the level of spatial
dependence of the variables in y when calibrating the parameters of the
algorithms.

Differences between regular and irregular lattices have a significant im-
pact on the evaluation criterion and solution times. For irregular lattices,
we found a 12.84% reduction in the capacity of the algorithms to reduce the
evaluation criterion (Table 6). However, the algorithms converged 8.77%
faster with irregular lattices when compared with regular (Table 7).

Table 7 shows that increasing the threshold value (TH) from 100 to 500,
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yields a 34.78% reduction in running time for Tabu Search. This effect is
the opposite for the other two algorithms: Simulated Annealing produces
increases in running time by an average of 84.45%, and the Greedy algorithm
multiplies the average running time by a factor of 2.13.
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Table 5: Number of times that each algorithm reached the best known
solution.

ρ = 0.6 ρ = 0.9

Heuristic TH=100 TH=300 TH=500 TH=100 TH=300 TH=500

Regular lattice n = 400 (20x20)

Greedy 0 0 0 0 1 1
SA-0.9 0 0 0 0 1 1
SA-0.998 0 0 0 0 1 1
Tabu-10 4 1 7 3 2 6
Tabu-24 6 4 3 4 5 3
Tabu-85 1 6 0 4 4 2

Sacramento census tracks n = 403

Greedy 1 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 1 0 0 0 0 0
Tabu-10 4 3 4 6 3 1
Tabu-24 2 2 4 4 2 4
Tabu-85 6 6 4 3 6 6

Regular lattice n = 1, 056 (33x33)

Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 0 0 0 1 0 2
Tabu-24 2 0 1 3 1 5
Tabu-85 8 10 9 9 9 6

Colombia municipalities n = 1, 068

Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 1 2 0 0 1 2
Tabu-24 2 3 2 1 1 2
Tabu-85 7 9 9 9 8 8

Regular lattice n = 3, 080 (55x56)

Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 3 0 1 2 1 0
Tabu-24 3 0 5 1 1 1
Tabu-85 7 10 7 10 10 9

US counties n = 3, 085

Greedy 0 0 0 0 0 0
SA-0.9 0 0 0 0 0 0
SA-0.998 0 0 0 0 0 0
Tabu-10 0 0 0 0 0 1
Tabu-24 2 1 2 2 1 0
Tabu-85 8 9 8 10 10 9
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Table 6: Average reduction of the evaluation criterion (%).

ρ = 0.6 ρ = 0.9

Heuristic TH=100 TH=300 TH=500 TH=100 TH=300 TH=500

Regular lattice n = 400 (20x20)

Greedy 6.11 2.43 1.19 5.52 1.96 1.07
SA-0.9 6.58 2.55 1.21 5.62 1.98 1.08
SA-0.998 6.37 2.53 1.21 5.62 1.98 1.08
Tabu-10 8.67 3.13 2.00 6.52 2.54 1.93
Tabu-24 8.57 3.32 1.90 6.90 2.71 1.86
Tabu-85 7.32 3.46 1.29 6.53 2.52 1.59

Sacramento census tracks n = 403

Greedy 4.25 1.22 0.90 4.37 1.85 1.10
SA-0.9 4.48 1.64 0.94 4.49 1.85 1.28
SA-0.998 4.37 1.52 0.93 4.46 2.02 1.26
Tabu-10 5.62 2.44 1.67 6.36 2.41 1.50
Tabu-24 5.77 2.56 1.85 6.42 2.44 1.89
Tabu-85 5.90 2.79 1.76 6.17 2.62 1.99

Regular lattice n = 1, 056 (33x33)

Greedy 4.29 1.01 0.97 4.48 0.62 1.20
SA-0.9 8.57 3.47 1.57 7.66 3.30 1.71
SA-0.998 5.78 2.36 1.21 5.92 1.87 1.41
Tabu-10 8.42 3.17 1.74 8.01 3.12 2.00
Tabu-24 8.57 3.41 1.84 8.20 3.18 2.11
Tabu-85 8.81 3.69 2.02 8.41 3.39 2.22

Colombia municipalities n = 1, 068

Greedy 3.82 0.73 0.51 3.50 0.97 0.77
SA-0.9 7.26 2.49 1.91 6.75 2.43 1.96
SA-0.998 4.92 1.61 1.16 4.76 1.41 1.24
Tabu-10 6.93 2.25 1.65 6.59 2.25 1.78
Tabu-24 7.04 2.44 1.82 6.76 2.29 1.85
Tabu-85 7.40 2.60 2.08 6.96 2.51 2.08

Regular lattice n = 3, 080 (55x56)

Greedy 2.93 0.41 0.22 3.30 0.60 0.30
SA-0.9 8.19 3.00 2.07 8.04 3.18 1.97
SA-0.998 6.32 1.92 1.35 6.14 2.14 1.19
Tabu-10 8.00 2.91 1.96 8.00 3.09 1.86
Tabu-24 8.06 2.95 2.00 8.01 3.15 1.88
Tabu-85 8.20 3.01 2.09 8.06 3.19 1.98

US counties n = 3, 085

Greedy 3.06 0.69 0.43 3.36 0.86 0.41
SA-0.9 7.07 2.53 1.51 6.78 2.54 1.47
SA-0.998 5.32 1.69 0.91 4.90 1.54 0.83
Tabu-10 6.95 2.46 1.41 6.71 2.44 1.40
Tabu-24 7.01 2.50 1.44 6.73 2.47 1.41
Tabu-85 7.08 2.54 1.52 6.79 2.55 1.48
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Table 7: Average running time (seconds).

ρ = 0.6 ρ = 0.9

Heuristic TH=100 TH=300 TH=500 TH=100 TH=300 TH=500

Regular lattice n = 400 (20x20)

Greedy 1.73 2.10 2.90 1.42 2.06 2.70
SA-0.9 1.69 3.91 3.68 1.43 3.04 3.84
SA-0.998 60.80 194.91 188.34 73.28 156.81 194.54
Tabu-10 282.95 174.28 116.10 224.44 152.48 135.75
Tabu-24 191.81 149.28 150.33 147.16 108.75 115.17
Tabu-85 207.81 220.40 402.04 186.51 169.44 297.86

Sacramento census tracks n = 403

Greedy 1.46 2.33 2.08 1.36 1.70 2.19
SA-0.9 2.63 4.03 3.93 2.19 3.68 4.02
SA-0.998 109.19 183.87 201.02 96.48 183.23 203.39
Tabu-10 197.17 115.26 86.97 206.24 130.08 93.65
Tabu-24 170.32 103.59 93.02 169.71 106.49 84.42
Tabu-85 148.63 167.09 153.94 214.57 115.52 149.73

Regular lattice n = 1, 056 (33x33)

Greedy 16.48 47.46 50.37 13.41 47.75 36.39
SA-0.9 41.56 48.43 30.21 28.71 60.32 29.60
SA-0.998 441.89 928.46 924.62 394.34 982.90 860.69
Tabu-10 3,530.05 2,509.21 1,952.74 3,147.65 2,672.26 2,018.99
Tabu-24 3,328.18 2,332.97 1,724.53 2,970.06 2,553.66 1,617.56
Tabu-85 2,973.35 1,931.83 1,262.03 2,227.80 2,207.33 1,114.55

Colombia municipalities n = 1, 068

Greedy 21.80 42.81 58.81 23.43 41.06 64.70
SA-0.9 31.54 37.33 39.56 30.25 39.09 40.61
SA-0.998 519.97 987.90 1,351.52 575.65 1,175.31 1,337.92
Tabu-10 2,090.06 1,434.37 1,196.22 2,183.32 1,530.76 1,350.57
Tabu-24 2,006.82 1,347.62 1,141.98 2,063.85 1,453.22 1,270.22
Tabu-85 2,197.85 1,311.72 1,117.74 1,823.41 1,418.37 1,150.04

Regular lattice n = 3, 080 (55x56)

Greedy 352.42 1,978.78 2,575.65 669.12 2,375.12 2,904.57
SA-0.9 670.17 742.92 774.82 646.77 781.64 768.19
SA-0.998 4,580.04 10,109.48 9,757.43 4,982.57 11,094.88 10,080.38
Tabu-10 65,327.64 46,601.99 40,360.95 62,786.81 47,136.13 38,793.53
Tabu-24 62,771.18 43,679.58 37,356.54 59,665.65 44,649.17 36,327.65
Tabu-85 61,225.69 42,049.43 35,714.13 59,791.21 45,265.58 39,431.93

US counties n = 3, 085

Greedy 661.42 2,893.20 3,118.18 860.95 3,390.53 2,905.46
SA-0.9 399.73 451.83 435.96 452.39 527.75 496.55
SA-0.998 5,812.57 12,911.45 12,637.12 6,837.01 14,380.63 13,403.45
Tabu-10 37,339.67 25,348.69 20,360.10 42,089.08 30,138.07 23,410.21
Tabu-24 35,755.91 24,305.28 19,247.84 40,838.94 29,216.97 22,186.28
Tabu-85 35,091.20 24,738.21 18,973.94 40,191.39 30,613.88 23,694.65
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6 Conclusions and future research

In this paper we presented a new type of constrained clustering problem
that we coined as the max-p-regions problem. This problem involves the
aggregation of small areas into the maximum number of homogeneous re-
gions such that the regional value of a spatially extensive attribute is above
a minimum threshold value.

There are many potential applications of our model. For example, the
max-p can be used in the design of study regions that allow valid statisti-
cal inference in the presence of spatial heteroskedasticity such as in spatial
epidemiology studies that require a fair comparison of rate estimates across
regions. In addition, our approach can be explored as a way to control for
spurious spatial autocorrelation while minimizing the aggregation bias.

Classical problems in the literature can be also reformulated as a max-
p-regions problem. For example, all the formulations on police districting
and sales territory alignment assume that the headquarters or stores are
already located in the territory. This may be an overly strict assumption.
For instance, it is plausible that a researcher is confronted with a situation
where those facilities do not yet exist or they need to be reallocated. Then,
the max-p-regions model can be used to aggregate the areas into regions
such that the regions are homogeneous in terms of customer characteristics
or crime types, and each region contains a minimum amount of potential
customers or emergency calls. Next, once the regions are designed, one can
decide the best location of facility within each region at a subsequent stage.
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