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Abstract: Little research has been conducted on how differing spatial resolutions or 
classification techniques affect image-driven identification and categorization of slum 
neighborhoods in developing nations. This study assesses the correlation between 
satellite-derived land cover and census-derived socioeconomic variables in Accra, 
Ghana to determine whether the relationship between these variables is altered with 
a change in spatial resolution or scale. ASTER and Landsat TM satellite images are 
each used to classify land cover using spectral mixture analysis (SMA), and land 
cover proportions are summarized across Enumeration Areas in Accra and compared 
to socioeconomic data for the same areas. Correlation and regression analyses com-
pare the SMA results with a Slum Index created from various socioeconomic data 
taken from the Census of Ghana, as well as to data derived from a “hard” per-pixel 
classification of a 2.4 m Quickbird image. Results show that the vegetation fraction is 
significantly correlated with the Slum Index (Pearson’s r ranges from –0.33 to –0.51, 
depending on which image-derived product is compared), and the use of a spatial 
error model improves results (multivariate model pseudo-R2 ranges from 0.37 to 0.40 
by image product). We also find that SMA products derived from ASTER are a suf-
ficient substitute for classification products derived from higher spatial resolution QB 
data when using land cover fractions as a proxy for slum presence, suggesting that 
SMA might be more cost-effective for deriving land cover fractions than the use of 
high-resolution imagery for this type of demographic analysis.

INTRODUCTION

Acquiring accurate census data in developing countries is often a difficult and 
time-consuming process. Lack of infrastructure and the increasing presence of dense, 
slum-like housing make collecting such data labor intensive and expensive at the 
neighborhood level (Baudot, 2001). The lack of reliable demographic data inhibits 
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both urban planning and disaster recovery. So-called data dissonance, or the lack of 
coordination between existing demographic and geospatial data sets and their inac-
cessibility for responders, can result from data that are outdated, incorrectly scaled, or 
otherwise inappropriate for decision makers (National Research Council, 2007). The 
use of remote sensing imagery to collect or validate demographic characteristics has 
not been extensively examined. Many studies have utilized remotely sensed data to 
calculate population and map land cover and land use distributions (Ward et al., 2000; 
Chen, 2002; Lu and Weng, 2004; Wu and Murray, 2005), but there is little research 
on the correlation between demographic data and information extracted from remote 
sensing data. Such predictors can provide insight into the socioeconomic and health-
related characteristics present on the ground (Rindfuss and Stern, 1998). 

Although demographic variables cannot be accurately determined directly from 
remotely sensed imagery, the spatial characteristics of land cover elements such as 
rooftops, soil, and vegetation can be quantified to serve as proxies for the identification 
of both slum-like areas and residential areas associated with higher socioeconomic 
status (Weeks et al., 2007). These socioeconomic characteristics of urban areas could 
provide a framework for analysis of health inequalities and areas of poverty so that 
researchers and policymakers are able to make decisions about which areas are most 
in need of attention. 

Spatial resolution is one factor to consider when using imagery to infer demo-
graphic characteristics from land cover. Moderate-spatial-resolution imagery such as 
ASTER and Landsat-5 TM are economically priced or free, more accessible, and typi-
cally offer wider spatial coverage than more expensive high spatial resolution imag-
ery. But differences in spatial resolution can result in differing representations of the 
land cover in spatially heterogeneous regions and may thus significantly impact land 
cover classification. Due to the highly complex and heterogeneous spatial structure 
found in Third World urban cities, pixel-level classification techniques may not enable 
detection of small changes in the land cover, especially when using imagery of mod-
erate spatial resolution. Given this concern, it is important to assess the accuracy of 
sub-pixel classification techniques based on moderate spatial resolution imagery rela-
tive to the “hard” per-pixel based methods from higher spatial resolution data when 
 classifying land cover in developing cities.

The objective of this paper is to assess the utility of satellite remote sensing data 
as an indicator of urban slum conditions in Accra, Ghana, a city typical of developing 
urban areas. We focus on three key sets of questions. (1) How does choice of satellite 
imagery affect the reliability of land cover fraction estimates, and how appropriate 
is moderate- (i.e., economical) spatial-resolution imagery for demographic analy-
sis? (2) Will a sub-pixel technique (spectral mixture analysis) improve relationships 
between land cover and socioeconomic factors relative to a per-pixel-based classifier, 
and which technique quantifies land cover in a manner that is most closely associ-
ated with measures of land use and socioeconomic status derived from census data? 
(3) Are  percentages of land cover and socioeconomic variables correlated, and if so 
which types of land cover provide the strongest correlation? The paper concludes with 
a discussion of the implications of spatial resolution, classification technique, and land 
cover categorization for producing new types of demographic variables for analysis in 
areas where such data are scarce or unreliable. 
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BACKGROUND

Heterogeneity and Scale in Urban Demographic Analysis

Heterogeneity in the urban environment can be a significant hurdle for using sat-
ellite imagery to classify land cover given the diversity of built structures, vegetation 
types, bare soil zones, and water bodies (Herold et al., 2002). The theoretical con-
struct for the use of remotely sensed data is based on the idea that human behavior is 
shaped by these natural, built, and social environments in which they reside (Rashed 
et al., 2005). The use of remote sensing imagery to analyze demographic patterns 
has its roots in urban ecosystem classification (Anderson et al., 1976). The type of 
classification process employed is important when attempting to infer demographic 
information from the imagery. “Hard” classification, which allows only one class type 
per pixel, commonly assigns classes to a pixel based on the highest probability (or 
other  algorithmic determination) of membership (Zhang and Foody, 1998). This type 
of classification can result in misrepresentation or inaccuracies over land cover that 
is highly heterogeneous, as pixels are typically a representation of a mixture of sur-
face types that can create confusion for classification algorithms (Cushnie, 1987). This 
“mixed pixel problem” is exacerbated when imagery is too coarse and pixels are larger 
than features on the ground, but the utilization of increasingly higher spatial resolution 
data may also inhibit classification accuracy as a result of similar within-class spectral 
variability, which can cause confusion of feature class assignments (Cushnie, 1987; 
Marceau, 1999). Fisher (1997) describes four main causes of this mixed pixel prob-
lem: (1) boundaries between two or more mapping units; (2) the transition between 
types of mapped phenomena; (3) linear sub-pixel objects like a road; and (4) small 
sub-pixel objects like a house or tree. All of these challenges tend to be common 
in urban remote sensing applications, and higher spatial resolution is ultimately nec-
essary in urban morphological analysis due to the heterogeneity of urban structure 
and the similarity between certain spectral responses (Herold et al., 2002). Previous 
investigations of the tradeoffs between the accuracy and cost of moderate versus high 
spatial resolution imagery (e.g. Johansen et al., 2010) underscore the importance of 
the effects of scale. 

Research on the effects of scale continues to highlight the modifiable areal unit 
problem (MAUP) (Openshaw, 1984), for which remote sensing may be viewed as a 
particular case (Marceau and Hay, 1999). An analysis of the effects of scale using three 
sets of satellite imagery with ground sampling distances (GSD) ranging from 20 m to 
1.1 km found that most of the variables were sensitive to changes in spatial resolution, 
but with no real consistent pattern (Benson and Mackenzie, 1995). Remote sensing 
applications ranging from forestry classification (Marceau et al., 1994) to population 
density estimation (Wu and Murray, 2005) have found that a correlation between vari-
ables may exist at one scale but not another, which potentially creates biased results. 
Others continue to acknowledge that future research is needed to effectively assess the 
impact of the aggregation of metric data resulting from a change in scale (Herold et al., 
2002). Consequently, conducting analyses with varying spatial resolutions can be an 
effective way to study potential MAUP effects on the sub-pixel land cover classifica-
tion process as well as the collection of the demographic data of interest to this study. 
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Spectral Mixture Analysis

In cities of developing countries, the level of material composition can be so com-
plex that assigning one class to each pixel can yield an inaccurate representation of 
land cover when using moderate spatial resolution imagery (Chen, 2002). A sub-pixel 
classification may provide a more realistic representation of land cover in Accra by 
accounting for such heterogeneity. Spectral mixture analysis (SMA) estimates the pro-
portion of dominant material elements that compose the ground resolution element 
associated with a pixel by quantifying the percentage of particular land cover materials 
from a number of determined endmembers (Iverson et al. 1989). These endmembers 
are a class of spectrally pure pixels that represent known land surface materials and 
are used as training-site inputs for the SMA algorithm. The percentages of each class 
within a pixel are calculated based on the level of certainty that a given pixel belongs 
to a particular class (Cross et al., 1991). The algorithm also generates fraction images 
for each endmember, which represent the observed mixed pixel reflectance spectrum 
(Van der Meer and De Jong, 2000). 

A widely utilized method for analyzing urban spatial patterns and identifying can-
didates for endmember selection is the VIS model, which assumes that land cover in 
urban environments is a linear combination of three components: vegetation, impervi-
ous surface, and soil (Ridd, 1995). These three land cover types are modeled as the 
fundamental components of the urban environment, and this model has demonstrated 
improved classification accuracy using the SMA technique on Landsat Thematic 
Mapper (TM) imagery (Ward et al., 2000; Phinn et al., 2002), Landsat Enhanced 
Thematic Mapper Plus (ETM+) imagery (Wu and Murray, 2003; Lu and Weng, 2004), 
and multi-spectral imagery (Rashed et al., 2001, 2005). 

VIS does not account for land cover types such as water and wetlands, both prom-
inent in Accra’s landscape, and thus requires masking of such features prior to image 
classification. Confusion between types of impervious surface can also exist; clas-
sification errors often result from confusion between bare rocks, vehicle tracks, land 
under construction, or otherwise complex surface material composition (Chen, 2002; 
Lu and Weng, 2004), which could be problematic given Accra’s large proportions 
of dirt roads and razed land. Higher spatial resolution imagery may minimize this 
problem by maximizing the number of pixels which make up an urban area, thereby 
creating a more detailed representation of the landscape. Despite these challenges, 
the VIS model still remains the best available framework for delineating endmember 
candidates for an SMA framework.

Prior research has demonstrated links between the urban landscape and demo-
graphic patterns. Accra’s urban structure was explicitly investigated in a study of 
slum presence and neighborhood characteristics that identified a distinct correlation 
between land cover and socioeconomic status at the neighborhood level (Weeks et 
al., 2007). Ridd’s VIS model was used as the basis for a per-pixel–based classifica-
tion of high spatial resolution QuickBird imagery (2.4 m) in order to create land cover 
percentage data for each neighborhood. These percentages were combined with vari-
ous socioeconomic data to produce a regression model for predicting slum presence, 
and the proportional abundance of vegetation is a significant predictor of slum status. 
Stoler et al. (2009) noted the spatial structure of socioeconomic status relative to urban 
agricultural activity in Accra. These relationships between socioeconomic status and 
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land cover in Accra affirm the potential utility of satellite-derived data to infer addi-
tional demographic characteristics. 

METHODOLOGY

Study Area and Data

Ghana’s capital city, Accra, is located on West Africa’s south-facing coast along 
the Gulf of Guinea. Accra’s population exceeded 1.6 million in the 2000 census, and is 
estimated to have reached over 2.3 million in 2010 while still growing over three per-
cent annually (United Nations, 2010). Accra has been the seat of Ghana’s government 
since 1887 and became the capital in 1957 when Ghana became the first sub-Saharan 
country to gain independence. For administrative purposes, Ghana Statistical Service 
has partitioned the Accra Metropolitan Area (AMA) into over 1,700 Enumeration 
Areas (EAs), which are roughly equivalent to U.S. census block groups or U.K. output 
areas. Figure 1 portrays Accra’s location in Ghana and sub-Saharan Africa, as well as 
the EA distribution within Accra. 

The urban landscape of the greater Accra region is heavily influenced by its colo-
nial history. A distinct neighborhood structure has evolved from the de facto segrega-
tion and social exclusivity brought on by European occupation in the 19th century 
(Pellow, 2002). This spatial grouping by class and ethnicity developed into an unwrit-
ten part of the city’s constitution and allowed for unequal access to resources and 
distribution of facilities, a trend that more recently has been exacerbated by rapid 
population growth coupled with local government favoritism and corruption (ibid.). 
Consequently, studies have found there is a strong presence of societal and health-
related inequalities that are spatially distributed in a complex heterogeneous man-
ner (Weeks et al., 2006, 2007). Likewise, studies have found a great deal of spatial 
autocorrelation at the Enumeration Area level, which indicates a distinct spatial dis-
tribution with slum presence (Weeks et al., 2007) and other socioeconomic measures 
(Weeks et al., 2010). 

Two moderate spatial resolution and one high spatial resolution multi-spectral 
satellite images are utilized in this study; the image characteristics are summarized 
in Table 1. An ASTER image from April 27, 2001 contains visible and near infrared 
(VNIR) bands (spectral range of 0.52–0.86 μm) that have a spatial resolution of 15 
m, and cover a swath width of 60km. The shortwave infrared (SWIR) and thermal 
infrared wavebands are not utilized because their spatial resolutions (60 m and 90 m, 
respectively) are coarser than the VNIR bands.

Another moderate spatial resolution image utilized for this study is a Landsat 5 
Thematic Mapper (TM) image acquired February 4, 2000 with 30 m spatial resolution 
and a 185 km swath width. Bands 3 (red, 0.63–0.69 μm), 4 (near infrared, 0.75–0.90 
μm), and 5 (shortwave infrared, 1.55–1.75 μm) are used from this image because band 
2 (green, 0.525–0.605 μm) suffered from illumination distortion. Band 2 was sub-
jected to a cross-track illumination correction tool in an attempt to reduce the effects of 
this illumination distortion, but most of the image covering Accra remained affected. 
The shortwave infrared band is used in place of the green band as it yields the best 
contrast and detail within urban areas of the remaining bands. TM Band 7 (SWIR2) is 
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not used as an input to the SMA models, as it mostly provides redundant information 
to Band 5.

The third and highest spatial resolution image used is a 2.4 m QuickBird 2 (QB) 
multispectral image acquired April 4, 2002, with spectral coverage ranging from vis-
ible to near infrared (0.45–0.90 μm) and spatial extent of 16.5 km by 16.5 km. The 
spatial extent of coverage of the QuickBird image does not encompass all of the Accra 
Metropolitan Area. A substantial part of this analysis involves correlating SMA results 
to the data derived from this image, and therefore the extent for these statistical analy-
ses and comparisons were limited to that of the QuickBird image. Thus 237 of 1,724 
Enumeration Areas are excluded from the analysis, with most of these located in the 
eastern region of the city. 

Our retrospective approach is limited by the available image data that had been 
captured during three different years (2000, 2001, and 2002), as even tasked image 
acquisitions for tropical locations such as Accra are beset by perpetual cloud cover. 
The three acquisition dates occur seasonally within the onset of Accra’s rainy season, 
which generally ramps up in April and is wettest in May and June. We were unable to 
locate adequate daily or monthly rainfall data for Accra to determine inter-annual dif-
ferences from 2000–2002, but there is a potential bias toward greater vegetation cover 
in the ASTER image acquired April 27, 2001 relative to the Landsat TM (February 4, 
2000) and Quickbird images (April 4, 2002). 

A geographically referenced GIS layer of Accra’s enumeration areas in shapefile 
format (see Fig. 1) is used to extract the average land cover fraction composition for 
each EA within the study area. This layer was previously created by manual digitiza-
tion of EA boundaries based on descriptions provided by Ghana Statistical Service and 
interpretation of the georeferenced QuickBird imagery. 

Approach

The first objective of this study is to generate land cover fraction data through 
image classification and spectral mixture analysis (SMA), and then compare fraction 
estimates from various data sources and approaches at the level of Enumeration Areas. 
SMA is performed on both the ASTER and Landsat TM images and the SMA results 
are compared to VIS percentages created from per-pixel hard classification of the 
ASTER and QuickBird image. The second objective is to determine how correlated 

Table 1. Image Characteristics of QuickBird, ASTER,  
and Landsat TM Scenes Analyzed

QuickBird ASTER Landsat TM

Acquisition date April 4, 2002 April 27, 2001 February 4, 2000
Swath 16.5 km 60 km 185 km
Spatial resolution 2.4 m 15 m 30 m
Wavebands used 2, 0.52–0.60 μm 2, 0.52–0.60 μm 3, 0.63–0.69 μm

3, 0.63–0.69 μm 3, 0.63–0.69 μm 4, 0.75–0.90 μm
4, 0.76–0.90 μm 4, 0.76–0.86 μm 5, 1.55–1.75 μm
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SMA land cover fractions are with Slum Index data from Accra (a socioeconomic 
index described below), and which land cover types and image-derived products pro-
vided the best indicator of slum characteristics. If the SMA data are highly correlated 
with variables derived from socioeconomic data (such as the Slum Index), then such 
an approach could be applied to generate supplementary data for other Third World 
cities that lack reliable or abundant demographic information. 

Image Pre-processing

Several pre-processing steps are taken to prepare the imagery for information 
extraction and analysis. Because the QB image is used as a source for delineating 
endmembers—the higher spatial resolution helps to identify the land cover type cor-
responding to pixels determined to be spectrally pure—the ASTER and TM images 
are spatially registered to the QB image (root mean square error [RMSE] < 0.5 pixels 
using 20–25 ground control points) in order to compare land cover proportions derived 
from the image sets. Water features are masked in the analysis because they can be 
problematic when attempting to quantify land cover fractions using SMA, because 
directional effects of reflected sunlight can result in classification confusion with urban 
surfaces. Further, a water endmember is not a component of the desired VIS classes. 
The masks are manually digitized along the borders of water bodies. Once the images 
are registered and masked, endmember selection for SMA commences. All processing 
of remotely sensed data is performed using ENVI, a software application created by 
ITT Visual Information Solutions.

Per-pixel Classifications

Per-pixel unsupervised classification of VIS components is performed on both 
the QB and ASTER images (only SMA was performed on the Landsat image due 
to its coarser spatial resolution). Fifty spectral cluster classes are specified for each 
image set, and pixels are classified into one of these cluster classes. The cluster classes 
are subsequently labeled as vegetation, impervious surface, or soil land cover classes 
based on visual interpretation of the image and georeferenced field data collected in 
Accra. Only a single cluster from the ASTER classification—corresponding to both 
known cleared land and large buildings—requires further classification (i.e., “cluster 
busting”) into 10 additional clusters, yielding more precise VIS class assignments. This 
procedure is unnecessary for the QB-derived unsupervised classification product. 

SMA Estimates of Land Cover Fractions

Endmember (EM) selection is the crucial first step in the spectral unmixing pro-
cess that can be achieved through SMA. The goal is to determine the most extreme 
(in spectral-radiometric feature space) or spectrally pure pixels for inherent land cover 
(LC) classes as the primary signature bases for unmixing algorithms. EMs are extracted 
by manually selecting pixels of interest from the spatial, statistical, or feature space 
representations of the image. This image retrieval method of selecting EMs (com-
pared to spectral library methods) is more appropriate for this analysis due to available 
ancillary data, the lack of atmospheric optical data for atmospheric correction, and the 
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absence of known spectral libraries for the study area. Studies which select EMs using 
the image retrieval method often use some form of high spatial resolution imagery to 
identify features on the ground even when the spectral unmixing is being performed on 
coarser imagery (Lu and Weng, 2004; Rashed et al., 2001; Ward et al., 2000). Because 
part of the rationale of this analysis is to assess the practicality of using moderate spa-
tial resolution imagery such as ASTER and Landsat in place of high spatial resolution 
imagery, EMs are selected both with and without using the QB image in order to assess 
the need for high spatial resolution imagery for SMA EM selection. 

Vegetation, impervious surface, and soil (VIS) are the three endmember classes of 
interest. A water or shade class is unnecessary due to the masking of water features, the 
presence of relatively few high-rise buildings that can cast shadows, and the equatorial 
location of Accra with small solar zenith angles (and therefore minimal shadowing). A 
set of endmember candidates is initially selected without the use of the QB imagery, 
based solely on the Pixel Purity Index (PPI) and visual analysis of feature space scat-
terplots. The PPI is an iterative process that repeatedly projects n-D scatterplots on a 
random unit vector and records the pixels that fall on the ends of the unit vector. The 
pure pixels are assigned a value based on the number of times the index recorded the 
pixel as extreme, with higher values representing pixels that are more spectrally pure. 
The PPI creates an output image of the pure pixels with values, which can then be 
overlaid onto the original image for analysis. 

Once spectrally pure pixels are located using the PPI, the corresponding locations 
on the image are determined using 2-D scatterplots. Ideal endmember candidates are 
often located at the tips or inflections of these plots (Rashed et al., 2001). Vegetation 
and soil EMs are most discernible, while pixels representing pure impervious sur-
faces are usually more difficult to identify along the bottom axis of the tasseled-cap 
feature space distribution due to the diverse types of impervious materials sensed in 
the urban landscape of Accra. The Accra airport (Fig. 1) is ultimately used to identify 
pure impervious surface pixels by examining its large buildings and wide, spectrally 
homogeneous runway. 

The combination of high spatial resolution imagery and scatterplot analysis is 
an effective method of selecting endmember signatures (Lu and Weng, 2004). Using 
similar procedures, we select a second set of endmember candidates by incorporat-
ing visual analysis of the high spatial resolution QB imagery in addition to the tools 
described above. 

We use an iterative approach for both methods of EM extraction. This involves 
locating potential EM candidates, running the SMA model, then assessing the output 
and spatial characteristics of the RMSE. Purer endmembers are then selected based on 
RMSE and presence of negative and “super positive” endmember values. Super posi-
tive endmembers are fraction values that exceed 100%, which constitute pixels that 
are potentially purer than those used in the unmixing process. Negative fraction values 
from one land cover type usually correspond to superpositve fractions from a different 
endmember type. The SMA model is run again with the purer endmembers selected 
from these superpositve regions. This process is repeated until an output is reached that 
minimizes these superpositive and negative values. Both sets of endmembers (selected 
with and without guidance from the QB imagery) are run through the SMA model 
to assess whether the added cost of QB for EM selection is warranted. The spectral 
unmixing process is conducted using the SMA routine in ENVI with unconstrained 
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variables that allow for the inclusion of negative values and do not require fractions to 
sum to one. Fraction images are produced for each endmember (vegetation, impervi-
ous surface, and soil) for both the ASTER and Landsat TM data sets. 

Once the fraction images are created, the average fraction of each land cover 
(VIS) class is derived for each EA using the EA boundary layer. Since the spectral 
unmixing process is unconstrained to allow for error, most of the values for each EA 
do not sum to 1. To control for this and create consistent percentages across data sets, 
the fraction values for each EA are normalized by dividing the value of each land 
cover type by the sum of all three within its EA. 

Statistical Analyses

Pearson’s correlation coefficient matrices are generated to assess the associa-
tion between VIS fractions derived from different image types and image analysis 
approaches, and also to assess the correlation of each set of image-derived fraction 
data with a Slum Index generated from census data. The first set of correlation coeffi-
cients is used to examine the agreement between VIS estimates from SMA of ASTER 
and Landsat TM imagery, and from per-pixel classifications of ASTER and QB data. 

Slum Index (SI) scores are calculated using a 10% random sample of individual-
level housing characteristics collected by Ghana Statistical Service in the 2000 census 
for all 1,724 EAs in the study site (Weeks et al., 2007). The survey questions used 
to create the Slum Index are based on UN-Habitat criteria for a slum dwelling. Each 
housing unit in the 10% sample is allocated one point for each of the following criteria 
it met: (1) lack of piped water within the unit; (2) lack of toilet and sewage connection; 
(3) the number of persons per room exceeds two; (4) less durable building materials; 
(5) the resident is not the owner. The SI for each housing unit is the sum of these met 
criteria, so that 0 indicates a house with no slum characteristics and 5 indicates a house 
where all five criteria were met. SI scores for each EA are created by calculating the 
average slum score for all housing units within each of the 1,487 EAs completely cov-
ered by the extent of the QB imagery. Despite potential reporting biases in the 2000 
census, the SI is a useful measure for identifying Accra’s most and least slum-like 
neighborhoods (Weeks et al., 2007). 

Univariate and multivariate regression analyses are also performed using the 
image-derived land cover fractions as independent variables on the SI scores sum-
marized by EA. Due to the linear nature of the VIS model, a multiple regression 
model cannot explain the relationship with SI if all three classes are included. Thus, 
the  correlation coefficients are used to determine the two land cover variables with 
the highest correlation to the SI, which are subsequently used in a multiple regres-
sion model. Residuals from the SI regression models are examined for outliers and 
influential values beyond a 95% confidence interval. Identified outliers are evaluated 
to highlight any land cover characteristics that may create confusion in the regression 
model. 

The presence of any spatial trend in the data would violate the regression assump-
tion of spatial independence (Rogerson, 2001). Thus, regression residuals are also 
tested for spatial autocorrelation using Moran’s I statistic in order to detect any pattern 
of spatial dependence in the residuals. A positive Moran’s I value indicates spatial 
clustering, while a negative value indicates a pattern of dispersal, and the associated 
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Z-score allows a test of statistical significance for any spatial autocorrelation pres-
ent. Once detected, spatial dependence is accounted for in the regression analysis by 
employing a spatial error model in the software program GeoDa v.0.9.5-I (Anselin et 
al., 2006). This model adds a spatial parameter to the regression equation in order to 
control for the spatial dependence in the data. The R2 measure from the spatial error 
model is compared to the original regression output to evaluate the impact of spatial 
clustering on model prediction. 

RESULTS AND DISCUSSION

SMA Results

The VIS fractions are portrayed in Figure 2. The PPI is effective at identifying 
pure vegetation pixels for the ASTER image, and EM candidates selected are generally 
similar to those selected based on interpretation of the QB image. The PPI does not per-
form well for soil or impervious endmembers, suggesting that high spatial resolution 

Fig. 2. Land cover fractions derived from per-pixel classification of QuickBird and ASTER, and 
SMA of ASTER and Landsat TM images, with common study area outlined.
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imagery for a limited extent may be necessary when deriving these  endmembers. Pure 
soil pixels for the ASTER image are difficult to identify with high certainty due to 
confusion with bright rooftops and spectral similarity with certain impervious materi-
als, and we use the QB image to successfully locate areas of dry bare soil for EMs. 
Similarly, candidate pixels representing impervious surface EMs are difficult to iden-
tify based on analysis of red and NIR feature space displays. Impervious surfaces asso-
ciated with the airport are distinct enough to be identified on the ASTER image, but the 
spatial resolution is not fine enough to distinguish the specific material composition 
of the surface (roof top, bright asphalt, etc.) identified by the PPI. Visual inspection of 
the QB image reveals that the PPI is only able to highlight a few of the rooftops and 
bright patches of asphalt around the airport buildings. Selecting candidate soil and 
impervious pixels associated with superpositive fractions from the initial SMA run 
help to alleviate this confusion.

The PPI, when utilized for selecting Landsat TM endmembers, is complicated 
by coarser spatial resolution and identifies many potentially pure pixels that are not 
located along the tips of the vertices in the 2-D data cloud and, upon visual inspection 
with the QB, are a mixture of two or three land cover types. Thus, the QB image is nec-
essary to adjust the PPI output, particularly for soil and impervious selections. Despite 
this confusion there is some success identifying vegetation EMs using the PPI from 
the Landsat TM image. The PPI identifies a few pixels which resemble the ASTER 
vegetation EM candidates in spectral space, though many vegetated areas selected in 
the ASTER PPI process are not identified in the Landsat TM analysis, probably due to 
the coarser spatial resolution or the absence of the green band. The PPI identifies pure 
impervious pixels that actually represent a mixture of impervious surface and soil. As 
with ASTER, the QB image is used as a reference to produce a superpositive pixel 
from the airport area. The PPI also identifies pure areas of dry bare soil from Landsat 
TM with greater success after visual comparison with the QB image. 

The first row of Table 2 provides mean land cover fraction values derived from 
each image source. A greening bias due to the later acquisition day of the ASTER 
image relative to the Landsat TM and Quickbird images appears to be evident. While 
the impervious surface fractions are relatively constant across data products, the veg-
etation fraction is consistent with the temporal pattern of average monthly precipita-
tion in Accra, varying inversely with the soil fraction. 

ASTER: SMA vs. Per-pixel Classification

Table 2 also contains the correlation coefficients of full-image VIS fractions and 
percentages from all image types and classification approaches for comparison. The 
ASTER per-pixel derived land cover fractions exhibit high to very high correlations 
with the QB percentages: the impervious surface class exhibits the strongest correla-
tion (r = 0.905), followed by vegetation (r = 0.884) and soil (r = 0.826). Of the SMA 
fractions, only vegetation yields a stronger correlation with the QB percentages than 
the per-pixel percentages (0.972 vs. 0.884), suggesting that the SMA fractions offer 
better characterization of vegetation. The SMA impervious fractions are slightly less 
correlated with the QB percentages than were the per-pixel percentages (0.863 vs. 
0.905), while the SMA soil fractions are substantially less so (0.577 vs. 0.826).
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There are advantages and disadvantages associated with performing SMA on 
ASTER imagery as a substitute for QB imagery compared to performing a hard per-
pixel classification of the ASTER data. The SMA-derived vegetation fraction demon-
strates greater agreement with QB than the per-pixel percentage, while the impervious 
fraction shows little difference. Hence the viability of using SMA on ASTER data 
rather than higher spatial resolution imagery depends on which VIS classes are theo-
rized to be linked to the process of interest. 

SMA Fractions vs. QuickBird Per-pixel Classification

We emphasize the comparison of SMA fractions derived from moderate spatial 
resolution image data with QuickBird-derived estimates, since theoretically the latter 
should enable derivation of more accurate estimates and is often considered as refer-
ence data for assessing the accuracy of the former (Small and Lu, 2006). Most of the 
correlation coefficients for land cover fraction estimates between the SMA and QB 
data in Table 2 are significant at a 99% confidence level (α = 0.01). Because statistical 
significance is influenced by the large sample size (1,487 Enumeration Areas), which 
can help detect smaller statistical effects (Hair et al., 1998), this analysis focuses pri-
marily on the correlation coefficient (r) rather than the significance assigned to each 
relationship. In lieu of definitive guidelines for interpreting the strength of correlation 
statistics, we utilize the following framework based on Cohen (1982): 0 to 0.19 is very 
low, 0.20 to 0.39 is low, 0.40 to 0.69 is moderate, 0.70 to 0.89 is high, and 0.90+ is 
very high.

Vegetation fractions derived from SMA on ASTER data exhibit the strongest cor-
relation to estimates from the per-pixel classification of QB data (r = 0.972) of any frac-
tion estimate in this study, and is the only relationship considered very high on Cohen’s 
scale. The SMA-derived ASTER impervious fraction is highly correlated with the QB 
impervious proportion (r = 0.863), especially when considering the complexity and 
variation in impervious surface type across Accra. The ASTER soil fraction exhibits 
a weaker correlation (r = 0.577) with the QB soil data, suggesting that the difference 
in spatial resolution may have an impact on estimating soil fractions. This could be 
attributed to confusion between spectra during the EM selection process, or to the lack 
of a representatively pure soil pixel at the 15 m scale of the ASTER image. 

Table 2 also shows strong negative correlations between different fraction vari-
ables, which bear substantive significance. The ASTER impervious surface fractions 
are highly negatively correlated with the QB vegetation percentages (r = –0.793), as 
are the ASTER vegetation fractions with the QB impervious percentages (r = –0.815). 
These are nearly identical to the correlation between QB vegetation and QB impervious 
surface (r = –0.792). Substituting SMA-derived ASTER fractions for QB land cover 
percentages of either vegetation or impervious surfaces produces almost the same cor-
relation values, which indicates further agreement between the two data sets. 

The SMA-derived Landsat TM fractions also exhibit strong correlations with the 
QB data. Impervious surface exhibits the strongest relationship (r = 0.865) and is 
nearly identical to the ASTER impervious fraction correlation (0.863), despite the dif-
ference in spatial resolution. The correlation of the Landsat TM vegetation fraction 
with QB vegetation is considerably weaker (r = 0.769) than the ASTER vegetation 
fraction (0.972), whereas the Landsat TM soil fraction is substantially more correlated 
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(r = 0.766) with QB than the ASTER soil fraction (0.577). It is unclear whether these 
discrepancies are due to spectral confusion or an underlying component in either data 
set that is linked to vegetation or soil. Overall there is strong agreement between the 
QB- and SMA-derived data, and moving from 15 to 30 m spatial resolution yields just 
a slight weakening of the vegetation relationship while strengthening the soil relation-
ship. These patterns are visible in scatterplots of the ASTER and Landsat TM fractions 
vs. the QB proportions (Fig. 3), which highlight the variation between the data sets. 

Modeling Slum Characteristics

The last column of Table 2 contains the correlation coefficient statistics com-
paring each set of VIS land cover data to the SI. Although none of the correlations 
between each data set and the slum index are high, some of the fraction data exhibit 
moderate correlations. 

Vegetation exhibits the strongest correlation with the SI for all data sets except 
for the per-pixel ASTER- derived data. The vegetation fraction from the ASTER SMA 
data has the strongest correlation (r = –0.509), higher than both the QB (r = –0.495) 
and TM SMA (r = –0.385) vegetation fractions. The per-pixel ASTER classification 
produces the lowest correlation of vegetation with the slum index (r = –0.330). These 
numbers indicate an inverse relationship between vegetation and the SI, meaning that 
more impoverished slum-like areas are generally associated with sparser vegetation. 
It is clear that the SMA-derived ASTER fractions have potential utility for predicting 
slum properties, as they display a stronger correlation with the SI than both the per-
pixel ASTER fraction and the QB fraction. The Landsat TM vegetation data exhibit 
the weakest relationship with the SI, indicating that the 30 m spatial resolution may 
not be detailed enough to quantify the low levels of vegetation cover associated with 
slum conditions. 

The impervious fractions also yield moderate positive correlations with the slum 
index, suggesting that greater amounts of impervious surfaces generally coincide with 
slum-like characteristics of a neighborhood. The QB and SMA ASTER impervious 
fractions produce similar correlations (r = 0.450 and 0.406, respectively), while the 
per-pixel ASTER impervious data are more weakly correlated with the SI (r = 0.371). 
This is curious when considering that the per-pixel ASTER impervious fraction is 
more highly correlated with the QB impervious fraction than with the SMA ASTER 
fraction. As with the vegetation fractions, the Landsat TM impervious fraction yields 
the weakest correlation (r = 0.345) relative to the other data sets.

Soil fractions produce the weakest correlations with the slum index of all land 
cover categories across all data sets. Soil does the poorest job of relating to the SI, not 
only by virtue of the weak correlations, but also because correlations were higher for 
the coarser data set for both the SMA and per-pixel methods of land cover fraction 
extraction. It is unclear what causes these discrepancies, but combined with the low 
r values, indicates that soil may not be suitable as a proxy for inferring “slumness” 
regardless of the spatial resolution or type of image processing method utilized.

Given the results from correlation analyses, vegetation and impervious surface 
are designated as independent variables for the multiple linear regression analysis. 
These fractions have stronger relationships with the SI than soil for both the ASTER 
and TM SMA, and both exhibit strong correlations with the QB data. Table 3 contains 
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results of univariate analysis between the fractions and SI, as well as the initial ordi-
nary least squares (OLS) multiple regression model. 

Moran’s I statistic is used to determine if spatial autocorrelation is present in the 
standardized residuals for each OLS model. The standardized residuals for all four 
models are positively spatially autocorrelated with I values corresponding to high 
Z-scores that range from 30.46 to 39.29 (p < .01). This reveals a spatial component to 
the VIS regressions that is not accounted for in the original models. Spatial heteroge-
neity can be expected in land cover processes, particularly with small areal units of 
analysis like the EA; previous work has found similarly high spatial autocorrelation in 
Accra’s neighborhood characteristics (Weeks et al., 2007, 2010). 

Results from spatial error models accounting for spatial heterogeneity at the EA 
scale are listed in Table 3 alongside the original univariate and multivariate results for 
comparison purposes; all four data sets show improved R2 values. The Landsat TM 
SMA and ASTER per-pixel data yield pseudo-R2 values that are twice as high (0.388 
and 0.373, respectively) as the OLS model R2 values. ASTER SMA and QB data again 
exhibit the highest R2 (0.401 and 0.396, respectively), although with less improvement 
from the original model. The ASTER SMA-derived fractions are influenced less by 
the spatial component than the per-pixel data, which suggests the possibility that SMA 
may help assuage the influence of spatial autocorrelation at 15 m spatial resolution. 

Results in Table 3 suggest that imagery-derived variables alone can account for 
up to 40% of the variation in the Slum Index at the EA level. It is also clear that the 
SMA-derived ASTER data are just as effective at predicting the SI values as the higher 

Table 3. Results of Univariate, Multivariate Ordinary Least Squares, and  
Multivariate Spatial Error Regression Models of Vegetation and Impervious  
Surface Fractions on the Slum Index

Univariate 
model

Multivariate  
OLS model Spatial error model

R2 R2 β Pseudo-R2 β

ASTER SMA 0.263 0.401
Vegetation 0.26 –0.605* –2.707*
Impervious 0.165 –0.112* –0.293

QuickBird per-pixel 0.254 0.396
Vegetation 0.245 –0.372* –1.223*
Impervious 0.202  0.155*  0.348*

Landsat TM SMA 0.186 0.388
Vegetation 0.148 –0.289* –2.580*
Impervious 0.119  0.217*  1.159*

ASTER per-pixel 0.155 0.373
Vegetation 0.109 –0.167* –0.707*
Impervious 0.137  0.269*  0.318*

* p < 0.01.
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spatial resolution QB data. The comparatively lower R2 of the per-pixel ASTER data 
indicates that SMA may have some influence in creating better agreement at the differ-
ing spatial resolutions. The spatial error model also increases the agreement between 
image data sets relative to the original model, as differences between R2 values are 
smaller when accounting for spatial autocorrelation in the residuals. Despite the dif-
ferences in R2

 between data sets, the order of predicting power is the same for both the 
aspatial and spatial models: SMA-derived ASTER data are the strongest predictor of 
the SI, followed by QB, TM, and per-pixel ASTER data. Vegetation is consistently the 
most influential independent variable for predicting SI across all data sets, although 
the regression coefficients for the spatial error model are slightly lower. 

Outliers are identified for both the ASTER and Landsat TM SMA standardized 
residual data produced by the regression in order to highlight any characteristics in the 
data that may create confusion in the SMA- based regressions. Of the 1,427 EAs used 
in the analysis, 74 EAs qualify as outliers at a 95% confidence threshold for the model 
based on ASTER SMA data, and 70 EAs for the TM SMA model; 60 EAs are outli-
ers for both data sets. There are more negative outliers than positive ones, suggesting 
that the regression model has more problems overestimating the slum index rather 
than underestimating it. SI values for these EAs reveal confusion when attempting to 
predict extremely low values (least slum-like) and to a lesser extent high values (most 
slum-like). The ten lowest SI values, as well as 35 of the lowest 50, are identified as 
outliers in both data sets. All have extreme negative residuals, meaning that the model 
estimation is significantly higher than the actual SI. EAs with the eight highest SI val-
ues are also found to be outliers in both data sets. 

There is no overwhelmingly distinct pattern in the VIS fractions for outlier EAs, 
but a few trends may be meaningful. Positively skewed outliers in the ASTER data 
tend to have high SI values in conjunction with high vegetation fractions relative to 
the mean of the entire data set, contrary to the general inverse relationship between 
the SI and vegetation. Some are larger EAs with lower population density along the 
periphery of the metropolitan area; from the QB imagery these EAs appear to be rural 
or industrial with little or no residential infrastructure. Non-residential areas could 
pose a problem for predicting slum presence using land cover such as vegetation. Peri-
urban areas in particular may exhibit some of the household criteria used to calculate 
the slum index despite high fractions of vegetation. Patterns among negatively skewed 
outliers are harder to identify. A cluster of negative outliers adjacent to marshland was 
found in both data sets. These areas feature higher-than-average soil fractions and a 
complex gridded network of dirt roads visible from the QB imagery. The absence of 
soil in the regression equation could create confusion in these areas, but the impact is 
likely minimal when considering the weak correlation of soil to SI.

SUMMARY AND CONCLUSIONS

This paper explores the impact of scale on land cover fraction data, as well as the 
relationships between land cover and the Slum Index. High correlations indicate gen-
eral agreement between VIS fractions derived from SMA of ASTER and Landsat TM 
imagery, and the high spatial resolution QB data. Correlations with the SI offer further 
evidence that the SMA-derived ASTER fractions might be an ample substitute for more 
expensive high spatial resolution QB imagery in an urban demographic application, 
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but the coarser Landsat TM data do not hold up to this standard. Vegetation fractions 
created from the SMA ASTER data in some instances outperform vegetation percent-
ages from a hard QB classification in their relationship with the SI, while impervious 
surface fractions are similarly correlated. Yet the impact of the modifiable areal unit 
problem on this relationship is apparent when examining the weaker relationships 
of the Landsat TM fractions with the SI. Regression results reinforce the subsequent 
underperformance of the Landsat TM data relative to ASTER and QB. The explana-
tory power of VIS data appears relatively unaltered between 2.4 m and 15 m, but is 
adversely impacted at 30 m spatial resolution, despite the fact that SWIR bands are 
incorporated for TM and not the other image data sets. 

It is clear from the SI correlations and regression results that the SMA classifica-
tion technique used on the ASTER data has a substantial impact on the results. SMA 
produces fractions different from those produced by per-pixel classifiers, and these 
fractions are more closely related to the SI. Specifically, the SMA-derived ASTER 
fractions produce stronger correlations with the SI for the relevant land cover classes 
of vegetation and impervious surface, and are also a marginally stronger predictor of 
the SI. In this application, SMA is the better method for deriving proxy measures of 
slum conditions. These relationships remain qualified by the size of features on the 
ground; the variation in tree canopies, road and trail width (especially when unpaved), 
and other landscape features may magnify the advantages of SMA in certain parts 
of the city. Also, differences in the time of year and day of acquisition of different 
image types could account for some difference in VIS estimates, subsequent correla-
tions between land cover fractions, and prediction of SI values. Detailed knowledge 
of intra-urban land cover variation is needed before adopting this approach in other 
urban contexts. 

Finally, the correlation and regression results suggest that there is a modest rela-
tionship between vegetation and the SI. The vegetation and impervious surface frac-
tions from both the QB and ASTER SMA are moderately correlated with the SI and 
are the best-performing components for predicting the SI. Vegetation is the strongest 
indicator of slum presence among the VIS variables and has the most potential as a 
predictor variable for demographic analysis. While the PPI is better at locating pure 
vegetation pixels (than other endmember types) and endmember selection improves 
by incorporating high spatial resolution imagery, it is still important to model non-
vegetation land cover, as three- and four-endmember models generally yield superior 
vegetation fraction maps (Song, 2005). Although there is a significant link between 
vegetation and the SI, vegetation alone cannot confidently predict slum presence, 
although the use of the spatial error model does improve the results. The vegetation 
fraction may be more useful when used in conjunction with other covariates to cre-
ate a more robust model for predicting slum presence, or when utilized as a proxy for 
neighborhood characteristics.

SMA is not performed on the Quickbird image in this study, and future research 
on the impact of sub-pixel vs. per-pixel techniques on high spatial resolution imagery 
could build on the results presented here. If SMA of ASTER data can produce results 
similar to a QB hard classification, perhaps applying SMA to the high spatial resolution 
imagery will yield even stronger relationships between land cover and socioeconomic 
variables. An object-based classification approach using the VIS framework has also 
shown potential for the delineation of neighborhoods of varying socioeconomic status 
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(Stow et al., 2007, 2010). The use of Multiple Endmember Spectral Mixture Analysis 
(MESMA) was considered for this analysis but was ultimately not used because the 
spectral libraries normally used to implement MESMA are unavailable, and creating 
one was beyond the scope of this work. The use of simple SMA is more suited to the 
parsimonious framework of this analysis, constructed with the idea that such method-
ologies could be used for developing cities where ground data are scarce or unreliable. 
SMA remains useful for this type of analysis, but it would be interesting to see how 
MESMA could impact the utility of land cover fraction data. 
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