Nayak et al. (2021) Machine Learning for Holistic Visualization of STEMI Registry Data. Journal of Biomedical Informatics. (link)
Tominski et al. (2021) Toward flexible visual analytics augmented through smooth display transitions. Visual Informatics. (link)
Song et al. (2020) Big Data and Emergency Management: Concepts, Methodologies, and Applications. IEEE Transactions on Big Data. (link)
Fouad, G., Skupin, A., and Tague, C.L. (2018) Regional regression models of percentile flows for the contiguous United States: Expert versus data-driven independent variable selection. Journal of Hydrology: Regional Studies. (link)
Mutschke, P. et al. (2017) Knowledge Maps and Information Retrieval. Special Issue of International Journal on Digital Libraries.(link)
Ahearn, S.C. and Skupin, A. (2016) From Body of Knowledge to Base-Map: Managing Domain Knowledge through Collaboration and Computation. In: Advancing Geographic Information Science: The Past and Next Twenty Years. (link)
Fabrikant, S., Gabathuler, C., and Skupin, A. (2015) SOMViz: Web-based Self-Organizing Maps. Kartographische Nachrichten. (link)
Skupin, A. (2014) Making a Mark: A Computational and Visual Analysis of One Researcher's Intellectual Domain. International Journal of Geographical Information Science. (link)
Skupin, A. (2013) A visual exploration of mobile phone users, land cover, time, and space. Pervasive and Mobile Computing. (link)
Burns, R. and Skupin, A. (2013) Towards Qualitative Geovisual Analytics: A Case Study Involving Places, People, and Mediated Experience. Cartographica. (link)
Ahearn, S.C., Icke, I., Datta, R., DeMers, M.N., Plewe, B., and Skupin, A. (2013) Re-Engineering the GIS&T Body of Knowledge. International Journal of Geographical Information Science. (link)
Wang, N., Biggs, T., and Skupin, A. (2013) Visualizing Gridded Time Series Data with Self-Organizing Maps: An Application to Multi-Year Snow Dynamics in the Northern Hemisphere. Computers, Environment and Urban Systems.(link)
Skupin, A., Biberstine, J., and Börner, K. (2013) Visualizing the Topical Structure of the Medical Sciences: A Self-Organizing Map Approach. PLoS ONE. (link)
Note: documents in Portable Document Format (PDF) require Adobe Acrobat Reader 5.0 or higher to view (download Adobe Acrobat Reader).