
150 CLIENT/SERVER COMPUTING AND DISRIIBUTED-COMPONENT FRAMEWORK

. .
Orfali, R., and Harkey, D. (1997). Client/Semer Programming with .luva and CORBA.

New York: Wiley. . . .
Orfali, R., Harkey, D., and Edwards. J. '(1996). The Essential Distributed Objects

Survival Guide. New York: Wiley. .

Orfali, R., Harkey, D., and Edwards, J. ('1999). Client/Server Siirvivul Guide, 3rd ed.
New York: Wiley.

Pleas, M. (2000). Microsoft .NET PC ~ a ~ a & e , December 5. pp. IPOI-IP08.
Rumbaugh, J., Blaha, M.. Premerlani, W., ' ~ d d ~ , .F., and Lorensen, W. (1 99 1). Object-

Oriented Modeling and Design. Englewood.Cliffs, New Jersey: Prentice-Hall.
Schmidt, D. C., and Vinosk. S. (1995). Object interconnections: Comparing Alter-

native Programming Techniques for ~ulti-"Threaded Servers. Column 5. IGSCI +
Report Magazine, Feb. 1 995. URL: ht@:/lwww.cs. wustl.edu/--c=schmidt/report-

. .
doc.htrn1.

Schroeder, M. D. (1993). A State-of-the-Art .Distributed System: Computing with
BOB. In S. Mullender (Ed.) Distribute@ ~j&rns. Wolungham. England: Addison-
Wesley, Chapter 1, pp. 1-16.

Seltzer, L. (1998). NT 5.0 Preview. PC ~ ~ a i i n e , 17(20). pp. 100-130.
Shan, Y.-P., and Earle, R. H. (1998). Enterprise Computing with Objects: From Client/

Server Environments to rlze Iirteriret. Reading, Massachusetts: Addison-Wesley.
Taylor, D. A. (1992). Object-Oriented ~ n f o m ' t i o n S~~stenms: Plannirig and Implemm-

tation. New York: Wiley.
Thompson, C., Linden, T., and Filman, B:. (1997). Thoclghts on OMA-NG: The Next

Generation Object Management ~rchitecture. URL: http://www.omg.org/docs/
orrnscl97-09-01 .html, May 1 1. 2000. '.

Vckovski, A. (1998). Interoperable and Dis~ributed Processing in GIs. London: Taylor
& Francis.

Vinoski, S. (1997). CORBA: Integrating ~ i v k s e Applications within Distributed Het-
erogeneous Environments. IEEE Corn@unicat'ion, February 1997, 3 5(2), pp. 46-53.

Weber, J. (Ed.). (1997). Special Edition: Using Java I . 1, 3rd ecl. Indianapolis, Indiana:
Que Corporation. . .

Yang, Z., and Duddy, K. (1996). CORBA: A. Platform for Distributed Object Corn-
puting. ACM Operating S?,stems Review, April, 30(2), pp. 4-31.

CHAPTER 4

TECHNOLOGY EVOLUTIONS OF
WEB MAPPING

Technology does not stand still, even in this jield. It is very likely that new methods
will become available in the near and distant fiture . . . and allow you to include

features not possible today.
-Brandon Plewe (1997, p. 253)

4.1 INTRODUCTION

The development of distributed GIs is following the progress of computer
technologies and telecommunication networks. As we mentioned in the first
chapter, it evolved from centralized mainframe GISystems to personal desktop
GIs to distributed GIServices that include the applications of wired Internet
GIs and wireless mobile GIs. Along with the progress of distributed GIs
applications, the technologies adopted by distributed GIs are also changing
constantly.

The technology evolution of distributed GIs is shown in Figure 4.1. It
started with static map publishing and evolved to static Web mapping, to
interactive Web GIs and to distributed GIServices. Static map publishing
distributes maps on the Web page as static map images in graphic formats
like Portable Document Format (PDF), GIF, or JPEG. It relied on the early
stage of Web technology-a giant URL-based HTTP server-to hyperlink
ready-made maps on the Web. Maps are usually part of the HTML document
to enrich the contents of the document. Users cannot interact with the maps
or change their display format in any way.

The second stage is static Web mapping., It involves the use of HTML
forms and the CGI to link the user input on the Web browser with GIs or

152 TECHNOLOGY EVOLUTIONS OF WEB MAPPING
. . . ._

1 llyll

E .- -
(0
E
0 .-
.y
0
E
s
U.

L.

Low Interictivity b
. . High

. L

.- - . .'. .

Corba I Java
= ActiveX Controls

:-' . Dynamic I-h'NL Application Server
Scripts = DCOM
Plug-in Component - based

- ActiveX Control XML
= Tables
I DPI

g c Java Applets . ~ , t

Low

Figure 4.1 ~ v o l ~ t i d i b f distn buted GIs.
. .

. ,?
% . . .

mapping programs on the servers. users make requests from the Web browser
using customized HTML forms. The request is then sent to the CGI through
an HTTP server to invoke GIs o r mapping engines. The GIs or mapping
engines create the map based on the user's request and generate an image
map on the fly. The new image is sent via HTTP back to the user on the Web
browser. However, the drawback of..the static Web mapping technologies is
that the performance of HTTP with CGI is slow, cumbersome, and stateless.
Several variations of CGI were developed to improve the performance of CGI,
such as Netscape's NSAPI, Microsoft's ISAPI and ASP, NeXTIApple's
WebObjects, Javasoft7s servlets, an6 fastTGI. But the interaction between
the user and the maps on the Web browser is still limited. The HTTP form
is text based and allows limited user input. Users cannot define or draw a
circle or a square on the image maps. .

The third stage is the interactive Web mapping, where more interactivity
and intelligence are added to the ~eb :c@ent side by using scripts like dynamic
HTML andlor client-side applicatidns .like plug-ins, ActiveX controls, and
Java applets. Some user queries can be .processed on the client side without
sending requests to the servers. ~ut.' 'ih& approach still requires HTTP con-
nections and the Web servers to mediate between software objects running
on the client-side machines and the servers that store these objects.

The fourth stage is the distributed~GIS~rvices where GIs components on
the Web client side can directly communicate with other GIs components on
the server without going through an,HTTP server and CGI-related rniddle-

.. . . .
. -

', . .

- Lbl ' HTML '. =Sewlets 'ISAPI .
. .

Static Map 'NSAPI .. ' ' q

Image . .
2

4.2 STATIC MAP PUBLISHING 153

ware. Distributed GIServices rely on the communication between CORBAI
Java ORB or Microsoft's SOAP on the client side and the CORBA/IIOP and
server-side Java or .NET/COM + technology in the Microsoft world (we will
discuss these in detail late in the next chapter).

Key Concepts

Distributed GIServices is a broad term for network-based geospatial
information services. There are two major application of distributed
GIServices, wired Internet GIs and wireless mobile CIS. This book uses
the two terms Internet GIs and distributed GIServices interchangeably.
Internet GIs emphasizes the aspect of physical networks and distributed
GIs focuses on the distributed access mechanisms of information ser-
vices.

Distributed GIServices refers to a specific sojhvare framework where
GIs components on the Web client side can directly communicate with
other GIs components on the server.

This chapter and the next will cover the underlying technologies that sup-
port the evolution of the distributed GIServices. This chapter starts with the
early development of static map publishing on the webpage. It then introduces
the static Web mapping technology, including HTML forms,- CGI, servlets,
and ASPS. It follows with the description of interactive Web mapping that
covers dynamic HTML and client-side applications such as plug-ins, ActiveX
controls, and Java applets. The technologies that constitute distributed GIs
will be discussed in the next chapter, which includes the CORBAIJava ORB,
CORBAIIIOP, COM+, XML, and Document Object Model (DOM).

4.2 STATIC MAP PUBLISHING

A static map publishing refers to embedding maps as graphic images like
GIF, JPEG, and Portable Network Graphics (PNG) inside an HTML page.
The map images are usually used as a visual presentation to illustrate the
points inside the HTML text. But the map image itself is not intelligent. That
is, the map image is a static image displayed on the Web browser. The user
cannot click on it to zoom to a certain area or get more information. A static
map publishing does not support feature data at the client side and does not 1, have map-rendering tools. It is a very thin client application that only supports
ready-made map images on the Web browser. To publish a static map image,
you can save a ready-made map as a graphic map image format and embed
it inside an HTML page. Figure 4.2 illustrates a graphic map example show-
ing a map of a regional park.

154 TECHNOLOGY EVOLUTIONS OF WEB &P~ING
' . .

Figure 4.2 Example graphic map image.' {Map generated by R. Thornberry,
C. Cronk, and K. Hess at San Diego State university.)

In addition, Acrobat's PDF file is. &other popular method to publish maps
on the Web. Figure 4.3 is an example.of a PDF map that can be embedded
inside an HTML document. . .

Static map publishing also includes a clickable map. That is, the whole
map image is divided into different parts. If you click on onc part, additional
information on this part of the map:win be displayed. Fol- example, if you
have a U.S. map and you click on a state on the U.S. map, information about
that state or even the separate state niap:will be displayed. Additional infor-
mation and maps for that state are separate HTML files or graphic image files
that are stored in the Web server as scpafate files. Figure 4.4 illustrates the
park example, which can allow users to click on different playgrounds or
picnic area to show the actual photos. ' ;

Both the embedded static map images. and the clickable maps are simple
static map images. They both use the'simple Web publishing technology, and
no additional technologies are needed.:.So.we treat them in the same category.
We will now discuss how this static map publishing works o n the Web.

.
4.2.1 Embedding Map Images in HThilL Documents

. .; .
To embed map images inside the HTML.aocument or as separate static image
files, you need to first make a map asone of the many graphic image formats,

.. .
.

4.2 STATIC MAP PUBLISHING 155

Figure 4.3 Example PDF map, San Diego-Tijuana International Border Planning
Area. (Map generated by A. Perry and K. Wells at San Diego State University.)

such as GIF, JPEG, and PNG or PDF. You then embed these map image files
inside the HTML document using the (IMG) tag or element in the HTML.

The (IMG) element in HTML includes an attribute "SRC" to indicate the
file name and its location. For example, (IMG SRC = " /maps/USAmap.gif ")
tells the Web browser that this is an image file "USAmap.gif" and it is located
at the maps directory on the server. There are other parameters associated
with the (IMG) tag. For example, the ALLGN parameter tells the browser to
place the map images at a certain place on the Web page. The ALT parameter
displays the alternative text for nongraphic browsers. The ALT information
is important for complying with the ADA (Americans with Disabilities Act)
requirements. Here is a simple example:

(IMG SRC="/maps/USAmap.gif" ALLGN="centerl ' ALT="A
USA map ")

The map image could also be linked with other map images or HTML pages.
For example, in the case of

(A HREF= ' ' About-USArnap . h t m l ' ') (IMG SRC= ' ' / maps /
USAmap.gif ")

156 TECHNOLOGY EVOLUTIONS OF WEB MAPPING
4.2 STATIC MAP PUBLISHING 157

Figure 4.4 Clickable static Web maps. Use4 can click on the location of playgrounds
or picnic areas to show the actual photos.'.(Mgp generated and designed by R. Thorn-
beny, C. Cronk, and K. Hess at San Diego State University.)

. .
. .

when the user clicks on the ~ ~ ~ m a p . ' i m a ~ e on the browser. the server will
return an HTML page (~ b o u t - ~ ~ ~ r n a ~ . h t m l) to the user.

. .
' . '; . 5 .. ? . . -

4.2.2 Clickable Maps

A clickable map refers to a map that links to separate information about
different parts of the map image. For ejtmple, if on the U.S. map you click
on the state of Wisconsin. the map Wisconsin will be displayed as a new Web
page; if on the Wisconsin map you clickon Milwaukee, the city of Milwaukee
map will show up. Here the terms map image, clickable map, and irnagemap
are often confusing. A map image is a gebgraphic map in a graphic image
format such as GIF or JPEG. A clickable.:map is a static map image but can
be clicked and linked with other HTML or image files. An imagemap is
simply a clickable image file that has hot links under differe!lt areas of the
image, not necessarily a geographic map: .

The clickable map can be created using imagemaps in the HTML page.
Clickable images or imagemaps are similar to the static on-line GIF images.
They are simply static images. The o.nly difference is that clickable maps
have hot spots or links assigned to thk&iHot spots are areas of the map
image that link to certain URLs.

4.2.3 Architecture sf Static Web Publishing

Static map publishing uses the simple clientlserver architecture model as
shown in Figure 4.5. It is a simple two-tier clientlserver model. The client is
a Web browser such as Netscape or Internet Explorer, while the server is an
HTTP server (or Web server), and the glue is the HTTP. The Web browser
handles the presentation element for users to request information and for
information to be displayed. The Web server receives users' requests and
sends out the file in a user-requested URL. Therefore, this Web clientlserver
model is simply a huge file server that serves files from URLs to all browsers.

4.2.3.1 The Client: Web Browser The client in this early Web stage is
the simple Web browser with no client-side plug-ins or Java applets. The sole
purpose of the Web browser is to interpret the contents of the HTML docu-
ments that were sent by the Web server and display them graphically. The
Web browser also helps navigate from one page to another using the embed-
ded hypertext links. The Web browser is incapable of interpreting any other
documents or data formats except for HTML documents. The use of early
Web browsers is similar to the use of a 3270 terminal, a simple display
monitor. All the contents are prepared on the server side, and there is little
intelligence on the client side. The partition point for this early Web model
is at the Web browser, as shown in Figure 4.6. It is a thin-client and thick-
server application. As mentioned before, this partitioning that is defined by a
protocol (HTTP, in this case) is not flexible.

The client gets resources from the server by clicking a URI (Uniform
Resource Identifier). The URI provides a global naming scheme to identify
the names and the location of resources on the Web. It identifies the address
of a resource and how to access it. A typical URI consists of four parts, as
shown in Figure 4.7: the protocol scheme, the server name or domain name,
the port number, and the location of target resources.

The protocol scheme specifies the type of protocol to be used to access
the resources on a server. URI supports the following Internet protocols:
HTTP, FTP, Gopher, Wide-Area Information Server (WAIS), News, and
Mailto. A URI to identify a file for downloading would require the "ftp"
protocol, such as this:

Internet
TCP I IP

Figure 4.5 Static two-tier Web clientlserver model.

4.2 STATIC MAP PUBLISHING 159

Presentation Data

Figure 4.6 Partition point for static Web clientlserver model.

server: The domain name is the sewer name to identify the Web sewer
site. A port number identijies the program that runs on a server: The
location of target resources specijies the path and the name of re-
sources: document, images, titles, and so on. URL is an informal term
associated with popular schemes: http, ftp, mailto, etc.

Finally, the URI contains information on the specific location of target
resources. It is a hierarchical description of a file location on the computer.
This usually includes a file directory, subdirectories, and files names. For
example, /path/subdir/meeting.html indicates that the HTML file meet-
ing.html is stored at the /path/ directory and Isubdirl subdirectory. The URI-
supported Web resource can be HTML documents, image files, video clips,
and programs such as a CGI or Java applet.

A URI for a program such as a forms-handling CGI script written in Prac-
tical Extraction and Reporting Language (PEW) might look like this:

f t p : / /www.GIScompany.com/do~loadfiles/street. s h p
http://www.getcornrnents.com/cgi-bin/comments.pl

This would result in a download of'the'shapefile "street.shpU from the
server www.GIScompany.com under the'directory of "downloadfiles."

The domain name is the server name. to identify the Web server site. It
could be a registered domain name such as w.ww.yahoo.com or a numeric IP
address such as 129.79.82.108. . -

., ...
The port number is to identify the program that runs on a server. It is

specified after the server name using a colon (:) as the separator If no port
number is specified, the browser will direcethe request to a well-known port
that is associated with a particular program. For example, 80 is ~lsually a port
number for accessing HTTP and 21 is a'reserved port number for FTP.

Key Concepts
. .

URI contains informatiorl on the spe&jc location of target resources.
It typically consists of four parts: the protocol scheme, the domain name,
the port number and the location of target resources. Protocol scheme
specifies the type of protocol to be us id io access the resoun*es on a

. -

Protocol Domain .' Port Resource
Scheme Name umber Location

Figure 4.7 Structure df. a. typical URI.

It should be noted that URL is an informal term associated with popular
URI schemes: http, ftp, mailto, telnet, and so on. It is no longer used in W3C's
technical specifications (http://www.w3 .orgladdressing).

4.2.3.2 The Glue: H77P The glue, or middleware, between the Web client
and Web server is the HTTP that is used by the Web to communicate between
the Web client and the Web server. Like RPC, HTTP is a request-response
oriented protocol. In fact, the HTTP is a stateless RPC on top of TCPIIP.
That is, for each call from a client, the HTTP establishes a connection be-
tween the client and server; the server then fulfills a client request and hands
over a reply to the client. The connection is then broken and the server forgets
everything it sent out.

Key Concepts

HTTP is a stateless RPC on top of TCP/IP A cookie is a textJile stored
on the client machine to keep the state.

To keep the state, a text file called a coolae is stored on the client machine.
For example, e-commerce applications often use coolues to store user-selected
items and to remember a user's personal profile so that the next time the user
visits the site the information is automatically retrieved. Cookies contain at-

>
L tributes that tell the browser to what servers to send them. But this is not

sufficient to support state-oriented clientlserver conversation, especially the
(L

map-based graphic user interface in GIs. For example, the user cannot draw
a rectangle on the Web browser because it requires clicking on two points,
while the stateless nature of the HTTP does not allow the server to remember

. .
160 TECHNOLOGY EVOLUTIONS OF WEB MAPPING

the first click once the mouse moves tonthe second point. Therefore, some
client-side applications such as plug-ins; Java -applets, and ActiveX controls
are developed to enhance the capability of the Web browsers (We will discuss

. . . them later in the chapter). .. .
How exactly does the HTTP help clienis to communicate with the HTTP

server? The answer is through a negotiation process of describing the data
type by both the Web browser and the Web. server. The HTTP allows Web
browsers to inform their server about the type of files they could understand;
in return, the server in its response informs the client about the type of data
it sends out. Web browsers and HTTP seniers use the Internet's MIME (Mul-
tipurpose Internet Mail Extensions) data representations to describe and ne-
gotiate the contents of the message. MIME'is an extension of the original
Intemet e-mail protocol that specifies a sfandaid to exchange different kinds
of data files on the Intemet, including audio, .video, images, application pro-
grams, and others. . ..

An HTTP request from the client consists o f a request method (GET or
POST), a URI, header fields. and a body: (which can be empty). The GET
method asks the server to send a copy of the 'file to the client. The POST
method allows a client to send a forrn's data @ the specific URI at the server.
When you request a URI in a Web browser,the GET method is used for the
request. When you send an HTML form, eitheraGET or POST can be used.
With a GET request the parameters are encoded in the URI; with a POST
request they are transmitted in the HTTP message body.

The current common protocol is HTTP r.O,.which sets up a new connection
for each client request and creates a separate TCP connection to download
each URI. This may cause some cornrnunic&on problems while providing
multi-tasking services. The newest version- of. HTTP is 1.1, which has been
adopted by some advanced Web servers, such. as Apache and Netscape Fast-
track, and some mobile application servers.. The new HTTP 1.1 allows per-
sistent connection. That is, HTTP 1.1 keees the connection with the HTTP
server open for multiple request-response interactions. This means that many
images embedded in the same HTML document 'can be downloaded consec-
utively without brealung and reestablishing the link with the server. The sec-
ond advance of HTTP 1.1 is pipelining; that is, the client can send multiple
requests to the server before waiting for a esponse. In HTTP 1.0. the client
has to wait for the response before sending:another request. This ~neans that
HTTP 1.1 will allow users to click on two. poipts in a map before sending
the request to the server. Therefore, HTTP .f.l. offers the potential capability
sf drawing a box on a map on a Web browser. Lastly, HTTP 1. I provides
:ache validation commands to help clients maintain a consistent local cache
~f documents. This can reduce the overal1:network traffic and improve the

. . . ~rotocol performance. . .

b2.3.3 The Server: H7TP Server As we discussed before. A Web server
s often simply referred to as an HTTP servcr,which is a daemon that runs

continuously on the server machine. A daemon is a program that runs con-
tinuously to handle periodic service requests from other services or programs.
The daemon program responds to simple requests or forwards the requests to
other programs or processes. Each Web server has an HTTPD (HTTP Dae-
mon) that is continually listening to requests that come in from Web clients
and then serving pages out to clients. The role of the Web server is to listen
to the client request and respond by sending a precomposed hypertext doc-
ument or other documents.

4.3 STATIC WEB MAPPING

Static map publishing on the Web is simply an electronic copy of a paper
map. The users can only take a look at the map images on the Web page and
cannot interact with the map in any other ways. This is because the HTTP
server in the two-tier Web clientlserver system cannot handle user requests
other than serving ready-made files. To increase user interactivity, Web map-
ping emerged.

Web mapping refers to making maps, conducting queries, and doing some
limited spatial analyses in the server while presenting the output on the stan-
dard Web browsers. The output presented on the Web browser is a copy of
static map images that are generated by the programs in the server. So we
call this kind of Internet GIs static Web mapping. The emergence of static
Web mapping is the first true representation of the distributed GIServices on
the Web.

4.3.1 Early History of Static Web Mapping

The early research of static Web mapping and distributed GIServices (Gardels,
1996; Plewe, 1997; Tang, 1997) has been motivated by the concepts of an
open and distributed architecture. Three projects are of primary importance
in the development of GIServices. They are important because these projects
initiated the design of preliminary distributed GIServices frameworks and the
adoption of early Internet technologies. They provided the GIs community
with a glimpse of the potential of the Web and motivated the improvement
of geospatial technologies. All three early examples of Internet GIS belong
to the category of "static Web mapping" because the process of mapmaking
occurred only in the servers.

4.3.1.1 Xerox PARC Map Viewer The Xerox PARC Map Viewer was one
of the earliest prototype of static Web mapping and was created in June 1993.
Map Viewer was developed at Xerox Corporation's Palo Alto Research Center
as an experiment in providing interactive information retrieval via the WWW
(Putz, 1994). Map Viewer is an interactive Web application that combines the

162 TECHNOLOGY EVOLUTIONS OF WEB MAPPINO

ability of HTML documents to display:-graphical images with the ability of
HTTP servers to create new documents in response to user input (Figure 4.8).

Map Viewer used a customized server module (a CGI program) written in
the PERL scripting language. Map imagesiin GIF format were generated by
two separate utility programs on a UNIX server. The first program, MAP-
WRITER, produced raster map imagesfrom two public domain vector map
databases. The second program, RASTOGIF, converted raster images to GIF
format. In subsequent work. Xerox Map Viewer was integrated with U.S
Gazetteer WWW services created by P l e G (1997) to provide a text-based
query function, which is essential for a complete prototype of distributed
GIServices. The design of Map Viewer.introduced many innovative and ad-
vanced concepts in 1994. many of whiCh kiave since been adopted by other
Internet GIs projects. But Xerox did nbt expand its effort to further the
Map Viewer development, and has taken .it off line now. The screen shot of
the viewer is still available at http:Nww~2.park.con~/istl/proj~~ ~cts/www94/
mapviewer-example 1 .html.

. .

Xerox PAR Hap Viewer: world 0 . 0 0 ~ . $. 0 0 ~ (1.08)
,

. . Opt ions:
. -

Zmm In: QJ, 151. u, w; 2x01 h:: i l . ?) , u, r l t l o i , (l i c r) - * Features: Default, A l l : t h r d e r ? . tlwers --
Display: color- ~ r n E t i G 7 T C i 3:GZ; ;ectanpulBr ,d iwroids~ ; He i:r-r, Ig~. tai+
~tmnec ~ataaasd to M onlv @,L&-g3-g ... * Hide U ~ P Inare. Retrieve & i l n t ~ e (Inlv. fta Z o a b l n t , * Place nark a t (0.~01 0.00E). ~ ~ y . y , ~ ~ ~ $! , l j ~ ~

:: ,
. - . - ligure 4.8 Xerox Map Viewer. (Figure reprin&d 'with pern~ission from Palo Alto

tesearch Center.) . . .

4.3 STATIC WEB MAPPING 163

4.3.1.2 NAISMap and World Map Maker NAISMap was developed by
the National Atlas Information Service (Natural Resources Canada) in Sep-
tember 1994. NAISMap allowed users to interact with map images (in GIF)
on the Web to select map layers, order map layers, and even overlay map
layers. The user could select a location from the map; the client application
then passed the coordinate to the NAISMap server application, which then
returned the requested map areas as a GIF image to the user at the Web client.
NAISMap could provide maps in both a national view and regional view. It
is an early operational and interactive web-based mapping service released
on-line.

NAISMap has been operational for many years since its introduction in
1994. The current Atlas of Canada is its implementation (http://atlas.gc.cal
site/english/index. html) (Reed, 2002).

Another operational online Web mapping is the World Map Maker that
was developed at the Charles Sturt University by Paul Wessel and Walter
Smith in 1995 as an integrated Web interface to the GMT 3.x (Generic Map-
ping Tools) package and a geographic database (http:l/life.csu.edu.aulcgi-bin/
gislMap). With GMT, users can create maps on the Web using HTML forms
and generate maps as Postscript output files. The World Map Maker is a
typical implementation of HTML forms and CGI scripts. The user on the
Web client specifies the mapping parameters, which are transferred to GMT
commands. "The output of these commands is captured in a PERL scalar
variable. The contents of this variable are then written to a temporary
Postscript file, which is converted to the GIF format by the Ghostscript Pro-
gram" (Reed, 2002, p. 11).

4.3.1.3 GRASSLinks GRASSLinks was developed in 1995 by Huse
(1995) based on her Ph.D. dissertation at the University of California at
Berkeley. GRASSLinks was the first fully functional on-line GIService, con-
necting GRASS GIs software (from the U.S. Army Corps of Engineers) with
the WWW. GRASS is a grid-based GIs package offering public domain ac-
cess to environmental and geographical data. The development of GRASS-
Links was supported by the Research Program in Environmental Planning and
GIs (REGIS) at the University of California at Berkeley. To utilize GRASS-
Links, a user only needed a Web browser to access GIs functions provided
by GRASS (Figure 4.9).

The main goal of GRASSLinks was to encourage cooperation and data
sharing between different environmental agencies. In traditional GIs appli-
cations, each federal 1 local government agency would maintain its own data-
base as well as data obtained from other sources. GRASSLinks introduced a
new model of data sharing where each agency could maintain its own data
and access other agencies' data over the network as needed (Huse, 1995).
GRASSLinks could perform many GIs operations, including map display,
spatial query, overlay operations, reclassification, buffering, and area calcu-
lation. On-line users can save their work temporarily on the server and retrieve

. -
164 TECHNOLOGY !EVOLUTIONS OF WEB M A P ~ N G

S?n F r a n c i s c o Bay Area a n d Del t a Regions

Easter map: h e l v e - C a ~ t y San Francisco &&ac&ntol~an Joaauin Delta
Vector mp: hisport. of tbc C a l i f o n i a 5.s---an Joaquin Delta counties in rollor
Vector map: l a o r l i n e s i n th C a l i f o n i a Jaciamemto-ha Joaqain Delta counties m green
Vector map: Highays in the California %=&to-an Joaqaiu Delta counties In red
Initial display region: Slcramento Sln Jaqkin Delta . Ingc Size: 200 x 200

Display
b r a t ions Owra lions Operatiom

Calcule tlons

- -- V ~ e u infoxmat~on on a l l mASS data9h'@is available via GWLlnlrs

- - - -

G M L i d s Home I CXhSSLlnks h t a I 1 m i n k s Help I . [GRASSZinks Feedback 1

.
Figure 4.9 GRASSLink.s and its GIs operations.

saved files later. In general, G R A S S L ~ ~ ~ ~ demonstrates an ideal prototype for
high-end distributed GIs functions and provides an example of the first true
on-line GIService (Plewe. 1997). . .. , .

. . - . . L

4.3.1.4 Alexandria Digital Library ~roje.&t . The ADL project illustrated a
digital library framework for heterogenebus spatially referenced information
that can be accessed across the Internet. The ADL project was launched in
1994 concurrent with five other digital library projects (NSF, 1994). Many
important collections of information, such as maps, photographs, atlases, and
gazetteers, are currently stored in a nondigiiaI form, and collections of con-
siderable size and diversity are found o.dy in large research libraries. ADL
provides a framework for putting these col l~t ions on-line, providing search
and access services to a broad class of users, and allowing both collections

4.3 STATIC WEB MAPPING 165

and users to be distributed throughout the Internet (Buttenfield, 1998; But-
tenfield and Goodchild, 1996; Goodchild, 1995).

The major contribution of the ADL project was to introduce the digital
library services metaphor for distributed GIServices and to extend the types
of GIServices to cataloging, gazetteer searching, and metadata indexing. An-
other contribution of ADL was its exploration of Internet-based interface de-
sign processes. ADL utilized three different technologies for the actual
implementation. The first version ran as a customized ArcView project. The
second version was based on HTML and CGI programs (Figure 4.10). The
final version utilized Java applets and Java applications. However, the incom-
patible technologies between the thee prototypes caused inconsistent prob-
lems of data integration and delivery of services. The ADL user interfaces
proved difficult to migrate to each new version, and the task of redeveloping
their functions and interfaces was time consuming and costly.

Overall, the ADL project explored different computer technologies and
frameworks, identified major tasks of digital libraries, and became the first
on-line library service to provide comprehensive metadata browsing, display,
and query functions for geospatial information. The recent Alexandria Digital
Earth Prototype (ADEPT) is a follow-up to the ADL project. ADEPT aims
to use the digital earth metaphor for organizing, using, and presenting infor-
mation at all levels of spatial and temporal resolution with a specific focus
on geodata and images in California.

These early examples of static Web mapping represent milestone achieve-
ments for distributed GIServices. Xerox Map Viewer provided a preliminary
technical solution for distributed GIServices by using HTTP servers and CGI
programs. The technical framework of Map Viewer was followed by many
other static Web mapping applications. The development of Xerox Map
Viewer also indicated that a single GI service-map browsing-is not suffi-
cient and other GIs functions should be provided. GRASSLinks illustrated a
comprehensive prototype that provided many traditional GIs functions, such
as map browsing, buffering, and overlaying. However, both Xerox Map
Viewer and GRASSLinks were only built to mimic traditional GIs functions.
The ADL project introduced a new type of GIService using a digital library
metaphor and provided sophisticated library functions, including collections
holding, catalog searching, and metadata indexing. Notwithstanding the dif-
ferent functions and interfaces, these three examples adopted the same archi-
tecture in developing the applications: server-centered, three-tier Web server
architecture.

4.3.2 Architecture of Static Web Mapping

Static Web mapping takes advantage of two advancements in Web technology:
Web forms on the Web client side and the CGI on the server side. Web forms
are created in the Web client to facilitate user input, and CGI is developed at
the Web server to process the user requests. With the introduction of Web
forms and CGI, the Web now essentially became a three-tier clientlserver

Figure 4.10 HTML/CGI.ye+on of the ADL Project.

. - . .

model, as shown in Figure 4.1 1. The first tier is the Web client with the
function of displaying HTML and foYs, The second tier is the HTTP server
coupled with a CGI. The third tier consists of traditional application servers
such as map servers and DBMS servers- ..

The Web client is still a simple web browser with the capability of han-
dling HTML and Web forms. A Web form is an HTML page with data entry
fields for user input. The user inputs ate collected by the Web browser, which

Internet GIs Showcase: Digital Libraries

"Digital libraries basically store materials in electronic format and ma-
nipulate large collections of those materials effectively. Research into
digital libraries is research into network information systems, concen-
trating on how to develop the necessary infrastructure to effectively
mass-manipulate the information on the Net. The key technological is-
sues are how to search and display desired selections from and across
large collections" (from the Web site of the Digital Library Initiative
(DLI) Phase I http: /I www.dli2.nsf.gov/dlione).

The DL1 was supported by the (NSF) in 1994. There were six major
DL1 projects funded by four NSF awards during 1994-1998:

University of California at Berkeley (http://elib.cs.berkeley.edu), En-
vironmental Planning and Geographic Information Systems
University of California at Santa Barbara (http:l/ www.alexandria
.ucsb.edu), Alexandria Project: Spatially Referenced Map Information
Carnegie Mellon University (http: //www.informedia.cs.cmu.edu), In-
formedia Digital Video Library
University of Illinois at Urbana-Champaign (http://dli.grainger.uiuc
.edu 1 idli 1 idli.htm), Federating Repositories of Scientific Literature
University of Michigan (http: //www.si.umich.edu/UMDL), Intelligent
Agents for Information Location
Stanford University (http: /I www-diglib.stanford.eduIdiglib /index
.html), Interoperation Mechanisms among Heterogeneous Services

In 1998, the NSF announced DLI-Phase 2, which focused on the fol-
lowing issues:

Selectively build on and extend research and testbed activities in
promising digital libraries areas.
Accelerate development, management, and accessibility of digital con-
tent and collections.
Create new capabilities and opportunities for digital libraries to serve
existing and new user communities, including all levels of education.
Encourage the study of interactions between humans and digital li-
braries in various social and organizational contexts.

There are currently more than 30 university and DL1 projects that are
funded under DLI-Phase 2.

.
168 TECHNOLOGY EVOLUTIONS OF WEB MAPPIN,G

Web Internet Web :. Server - - - - - -
Client TCPllP Se,rier Applications

Figure 4.11 ~rchitecture of static map publishinp.

invokes a POST HTTP method and s e ~ d s the user inputs to the server in an
HTTP message. .. .

The Web server receives the message but cannot respond to it be-
cause the Web server does not understand any requests other than those for
~ ~ H T M L or other MIME-type document: Therefore, the HTTP server passes
the user requests to a back-end program specified in the URl. It uses a CGI
to pass the method request and the parameters to the back-end programs.

The back-end programs are traditional server-side applications that do the
actual processing. In the case of Welj:mapping, these back-end programs
include map servers and DBMS servers. Any clientlserver-based GIs pro-
grams that work on the server can become a map server. The role of map
servers is to fulfill the user requests a@ return the results to the Web server
via the CGI protocol. The Web servers'then returns the results to the Web
client. The Web server becomes middleware, connecting the Web client and
back-end server applications.

This is an important and common *architecture that dominates the early-
stage Web mapping applications. An important characteristic of this architec-
ture is that all user requests are process$d by server-side applications. All
output at the client side is merely mirrors of map images created by the serves.
Besides the three examples presented above, some more examples include
Visa ATM locator (http://w ww.visa.com), MapQuest (http:Nwww.mapquest
.corn), MapBlast ! (http:Nw ww.mapblast:com), and many others.

. .
I .

4.3.3 The Client: HTML Viewers with Forms

. Key Concepts . '
Forms are generally used in HTML 3.2 or later versions to gather
information from users for a CGI-based server application. METHOD

. .

4.3 STATIC WEB MAPPING 169

specijies invocation method for the data to be transmitted to the CGI
server application. The GET method encodes the data input in the URI,
while the POST method transmits the user input in the HTTP message
body. The ACTION attribute specijies the URI where the data are pro-
cessed.

The client of static Web mapping is the HTML viewer with Web forms. In
order for users to interact with back-end map servers, the HTML viewer needs
to have two basic functions. The first one is a mechanism for users to enter
text, such an address, and/or to select different options, such as selecting
different display layers. The second function is to submit the user input and
selections to the server. For example, the user may enter an address and then
submit the request to the server to return with a map showing the location of
the address. After seeing the returned map, the user may decide to zoom in
(submit another request) to see a more detailed map in a larger scale.

These two functions can all be made available in Web-based forms. Forms
are generally used in HTML 3.2 or later versions to gather information from
users for a CGI-based server application. A form in HTML starts with a
(FORM) tag and ends with the (/FORM) tag. The (FORM) tag has two man-
datory attributes: METHOD and ACTION. METHOD specifies the invocation
method for the data to be transmitted to the CGI server application. There
are two methods, GET or POST. The GET method encodes the data input in
the URI, while the POST method transmits the user input in the HTTP mes-
sage body. The ACTION attribute specifies the URI where the data are pro-
cessed. The URI is the name of a server and the location of the CGI program
or scripts. For example,

(FORM METHOD= ' ' POST' 'ACTION=HTTP: / / WWW. d g i s . edu / c g i - .

b i n / geocode)

where the CGI program is the geocode program that resides in the cgi-bin
directory at the server of WWW.dgis.edu. All CGI programs or scripts are
located in the cgi-bin directory. This ACTION attribute tells the Web server
that the incoming request is for a CGI program that is located at the cgi-bin
directory, so the Web server will invoke the geocode program via the CGI
protocol.

A form in HTML generally has three types of interface elements: the IN-
PUTfield for the user to enter data and submit requests, the SELECTfield to
select one option from a list of options in a dropdown list box, and the TEXT
AREA field to enter multiple-line text input, such as comments. An HTML
document can contain one or more forms, but a form cannot have another
form nested within it.

A general syntax of an INPUT field is as follows:

(INPUT TYPE="field-type" NAME="variable name"
VALUE=' ' d e f a u l t v a l u e ' ')

, .

170 TECHNOLOGY EVOLUTIONS OF WEB.M+PPING . . 1 ,

4.3 STATIC WEB MAPPING 171

where INPUT indicates this is an hpljt field; it has three properties: TYPE,
NAME, and VALUE. The TYPE property indicates an input tvve. There are . . - . -'I

eight input types, including text, password, hidden, checkbox, radio, reset,
submit, and image. NAME specifies the name of the variable (it is not the
displayed name); and VALUE is theactpal data value of the variable NAME.
NAME and VALUE are a n a m e ~ v a l u ~ pair to be sent to the server. The
VALUE property could have a defadt value.

The HTML viewer with forms is a?thin client; there is no restriction on
the operation platform. There is also. do requirement on the Web browser or
the computing power of the client computer. Therefore, it is mostly applicable
to the vast majority of the audience.. However, there are some drawbacks of
the HTML viewer Notably. the interactivity between the user and the map
image is very limited. The user cannot select a spatial feature or draw a box
or a circle on the map due to the stateless nature of the HTTP. To improve
the interactivity, DHTML or JavaScript could be used. The use of DHTML,
VBscript, and JavaScript can allow fhe user to better interact with the map

1 . images. . .

. . ._

4.3.4 HTTP Server with CGI .
F

The data input from the HTML form.is dassed to the map server through the
HTT.P server and CGI. When the user fills the form and clicks on the Submit
button, the data input is sent to the H m server, which relays the information
to the CGI program. The CGI then interacts with other applications
in the server such as a map server and'a DBMS server. The map server does
the work and returns the results to;the CGI program, which reformats the
result in an HTML format and sends'it to the HTTP server. The HTTP Web
server then forwards the results to the Web client.

It can be seen that the CGI is an :hiportant middleware to link the Web
client and server with a back-end external server application such as a map
server. It is a simple language-independent standard interface that runs on top
of the operating system to interface ,external applications with Web servers.
It can be used to process user requests that involve comp~ltation or invoke
other applications on the server. It k.o,rks. on any type of Web server and
allows a server to start an external ~ iocess . The CGI scripts handle the in-
formation exchange between the Web server and other server applications
such as the map server (Figure 4.l2);.Basically7 CGI is a message-handling
protocol or interpreter that receives user inputs and parses them into param-

. .
Send

lnvoke ' - Variables
1113-,

-.
t

Return
Results Results

Figure 4.12 Architecture of CGI- based' hternet GIs. (Source: Peng, 1999.)

eters of variables to be used in map servers or other GIs programs. It can
invoke running map servers and/or other GIs programs, reformat output, and
send it back to Web browsers.

A CGI program can be written in any language, such as C or Perl. It can
access external resource managers such as files and databases. It is thus a
native program. The CGI program can also connect with other applications
using any of the communication middleware such .as RPC and object mes-
sages. CGI programs add more functionality and interactivity to the Web page.

To illustrate how CGI works with the Web server and the map server, we
will look at an example step by step [adapted from Orfali et al. (1999)l:

A Web user requests a map by typing a street address or a city name
and clicking on the Submit request button. The Web browser collects
the data within the form and assembles it into a string of name-value
pairs that are separated by an ampersand (&). For example,

S t r e e t = " 2 1 3 1 E . H a r t f o r d A v e . "
& c i t y = " M i l w a u k e e U & S t a t e =" W I " & Z i p = 5 3 2 1 1

The Web browser makes an HTTP request that specifies a POST HTTP
method, the URI of the target program in the cgi-bin directory, and
the typical HTTP header. The HTTP message body or entity contains
the forms data as mentioned in step 1, that is, the string of name-
value pairs.
The HTTP server receives the HTTP request via a socket connection.
The server parses the HTTP message and discovers that it is a POST
for the cgi-bin program. It then starts the interaction process with the
CGI.

4. The Web server sets up environmental variables to send parameters to
the CGI program. Environment variables are used by the Web server
to communicate with the CGI program about the environmental infor-
mation such as the server name, request method, conten't types, content
length, path and directory, and script name.

5. The HTTP server starts a CGI program by executing an instance of
the CGI program specified in the URI.

6. The CGI program reads the environment variables and discovers, in
this case, that it is responding to a POST method.

7. The CGI program receives the HTTP message body (i.e., those name-
values and name-value strings) via the standard input pipe (stdin) and
parses the string to retrieve the form data. It uses the content-length
environment variable to determine how many characters to read in
from the standard input pipe.
The CGI program invokes the GIs program or map server and trans-
lates the request to a format or set of variables that the map server can
understand. Each request is answered in a separate process by a sep-

-
172 TECHNOLOGY EVOLUTIONS OF WEB MAPPING 4.3 STATIC WEB MAPPING 173

arate instance of the CGI program, and a new process of the GIs
program or map server is lau*hed for each request. The map server
creates as many processes as the number of user requests received.
More simultaneous requests require the server to create more concur-
rent processes.

9. The map server then processes the request by geocoding the address
and making a map centered at pie requested address. It then sends the
output back to the CGI script: ', ..

10. The CGI program wraps the o&put with HTML or some other MIME-
type format by writing the map .sever output to its standard output
stream and sends the output as the IfTTP response entity and the HTTP
response header back to the web server. The CGI program then returns
the results to the HTTP server via its standard output (stdout).

11. The HTTP server receives the resu.ks on its standard input and con-
cludes the CGI interaction. T ~ ~ ! H T T P server sends the results back to
the Web browser. Either it can append some response header to the
results it received from the CGI program or it sends it "as is" if the
response header was added by:thl CGI program. It then breaks the

. . . connection with the Web client..:. ..
12. At the Web client, the map image'isdisplayed at the Web browser.

. .
The use of HTML forms and CGI tq process user requests makes the Web

mapping possible. The user can request its own map by specifying the layers
and scales. It can also take advantage.ofthe analysis functions of existing
GIs programs. But it has four main drawbacks: low performance (a new
process has to be created for every request), statelessness, platform depend-
ence, and security concerns (Orfali et al., 1999).

First, every request has to create a new CGI process, which is time con-
suming and requires large amounts of sever RAM. This can restrict the re-
sources available for sharing with other server applications. Therefore, CGI
applications do not scale well. When' there are many simultaneous requests
from Web clients, the system will perfo&;poorly. CGI may become a bot-
tleneck or even a failing point in the wfiole 'web mapping system.

Second, the CGI and HTTP server is stateless. This means that every single
request, even a simple zoom in or zoom out,needs to go through the whole
process from the Web client to the Weber server to involung the CGI program
and map server and back to the Web '?lient. This creates a lot of network
traffic and slows down the whole proce~s:~'Furthermore, the stateless nature
limits the user interactivity at the Web client. In addition, the output is still a
map image. Users cannot directly interact with the map.

The third drawback of this approach i$ that CGI is platform dependent;
that is, different CGI programs have to ;be created for each computing plat-
form.

Finally, CGI programs could pose a security risk to the Web server and
other applications on the server because CGI is comprised of native codes
that have access to other native programs. Hackers can send malicious codes
through the CGI program to infect the server programs.

Two problems of the HTTP and CGI approach-slow performance and
statelessness-can be mitigated. The performance of the CGI program can
be improved by using the Dynamic Link Library (DLL). The slow perform-
ance of the CGI is due to two reasons: (1) the HTTP server has to create a
separate process for each request received and (2) when the request is done,
the process is then closed. The opening and closing of the process take time
and slow down the server response. The DLL serves the function of CGI, but
unlike CGI, it stays in memory, ready to service other requests until the server
decides it is no longer needed. The ISAPI and the NSAPI are in the forrn of

I

a DLL. ISAPI works on the Microsoft Internet Information Server (IIS), while
; NSAPI works on the Netscape EnterpriselFastTrack server. They are used to
; extend the capabilities of the Web server.

ISAPI and NSAPI DLLs reside in the same process as the HTTP server;
therefore, all the resources that are made available by the HTTP server process
are also available to the ISAPI or NSAPI DLLs, whereas the CGI applications
run in different processes. Some benchmark programs show that loading
DLLs in-process can perform considerably faster than loading them into a
new process. Furthermore, in-process applications scale much better under
heavy loads. Multiple ISAPI or NSAPI DLLs can coexist in the same process

I as the server. They are rnultithread-safe to handle multiple simultaneous re-
quests.

The statelessness of the HTTP and CGI can be eliminated by using hidden
fields in the HTML forms andlor cookies. A hidden field is invisible from
the form but contains values that can be transmitted to the CGI program. The
values in the hidden field from previous user input and kept by the Hidden
field in the (INPUT) tag so that the user does not need to reenter them each
time. For example, if the user entered a street address to request for a geo-

: coded map, when the user received the map from the server, he or she decided
to zoom in to a larger scale. How does the CGI keep the state that this user
already has a map that centered at a specific address? Well, the CGI uses the
hidden field to store information from previous foms to the next. So, when
the user later clicks on the "Zoom in" button in the form, the previous user
input, such as street address and map extent, becomes a hidden field and is
sent to the CGI program through the HTTP request. The CGI program would
parse these hidden fields as well as the new INPUT fields and send them to
the GIs server to produce a new map. The new map would be sent to the
client via the CGI and HTTP server.

Another approach to keep state information is to use cookies. A cookie is
a small piece of text file that is stored in the client machine. It records user
information such as user IDS or other basic configuration information. The

' role of the coolue is similar to a hidden field; the data stored on the client

174 TECHNOLOGY EVOLUTIONS OF WEB MAPPING

are similar to the value of the hidden field in the forms. Coolues communicate
with the server that creates them every time the user revisits the Web site.
Cookies are commonly used in e-commerce Web sites, but they are not often
used to keep the state of the Web mapping.

.:: . .
4.3.5 Xerox Map Viewer Example , ,

';.. .' '

The use of HTTP plus CGI for online mapping dates back to 1989, when the
first such system was designed by ~ c ~ o n q d Dettwiler and Associates (Reed,
2002). The early client was built using Mosaic (pre-Netscape) to display map
images generated from the server. But. the .most popular example is Xerox
PARC map viewer.

The software framework of Xerox ~ @ . - ~ i e w e r is another one of the ear-
liest examples of CGI-based Web mapping application (Figure 4.13). The
HTTP clients can submit their requests by sending a URI to the HTTP server.
The HTTP server will parse the URI sbings and then launch the CGI exten-
sion to invoke two Per1 programs (MAPWRITER and RASTOGIF) located
on the same machine.

Map images in GIF fo~mat were generated by the two separate utility
programs on the Sun UNIX server. The fkst.program, MAPWRITER, pro-
duced raster map images from two public domain vector map databases. The
second program, RASTOGIF, converted;raster images to GIF format.

After the RASTOGIF generates a new GIF image, the CGI program on
the server will create a new HTML with the new GIF image link and POST
the new HTML file back to the client-side Web browser.

Here are the two examples of encoded' URI requests for Xerox Map
Viewer. First, the URI request includes @e'following commands:

. . . .

border= 1 (turn on the country border meme)
lon= 1 17.75 (longitude)

Figure 4.13 Software architecture- of Xerox Map Viewer.

lat = 25 .O3 (latitude)
proj =rect (projection uses rectangles)

4.3 STATIC WEB MAPPING 175

The CGI programs located on the server-side process the request and generate
a new image, such as Figure 4.14. Figure 4.15 is another example of URI
requests sent by users generated by the CGI programs:

color= 1 (turn on the color display)
db=usa (access U.S. database)
feature=alltypes (turn on all types of features)

4.3.6 Map Servers and Other Server-Side Applications

The map server is the actual workhorse that processes the user requests. You
could develop your own map server to serve a special request, such as a travel
plan program. You could also use existing clientlserver GIs programs as map
servers, such as ArcInfo, ArcView, GeoMedia, or MapInfo. The advantage of
using existing GIs programs is that the GIs functions that were developed in
the program can be used by the user on the Web browsers. But the existing
desktop GIs programs were not designed for the Internet and thus do not

' scale well in the Internet and Web environment. Since each user request has
to create a process, the map server has to be able to create multiple processes.

: This requires you to have a map server with sufficient user seats or user

Figure 4.14 Xerox PARC Map Viewer request 1. (Figure reprinted with permission
from Palo Alto Research Center.)

4.4 INTERACTIVE WEB MAPPING 177

Xerox PARC Map Viewer: usa 38.62N la4.46W (4.OX2
. .

. . .

Figure 4.15 Xerox PARC Map Viewer req(l+'2 (Figure reprinted with permission
from Palo Alto Research Center.) . .

Besides a map server, other server applications such as DBMS could also
be run to fulfill the user request. In fact, in a 'more complex user request, the
map server has to work together with:'other. server applications, such as a
DBMS server and TP Monitor to produce the output that the user requested.
TP Monitor could be used to manage ad- balance the load of user requests.
It is essential to handle a lot of simultarieous requests.

In summary, Web mapping based on m P / C G I provides somewhat lim-
ited interactivity and functionality between the Web client and the map server.
It can do a reasonable job in creating custo&zed maps on-line under a low
load of user requests. There is no restrietidn on the client-side computer
platform. Anyone with a Web browser i s able to make maps on demand.

However, Web mapping using HTTP/.CGI as middleware does not scale
well. It does not offer users the desktop GlS.feel and functions. Users cannot
directly interact with the maps, as they.cqin'desktop GIs. Every interaction
has to go through the forms, which is :an indirect interaction. Users cannot
draw a box or square or query a spatial~element directly from the map. CGI
has serious shortcomings. First, it is staseless and does not maintain the state
between connections. This poses majo.r.obstacles in stateful GIs operations.
Second, the CGI has to load the GIs program into memory for each request.
This hogs a lot of server resources and :creates considerable performance
limitations.

4.4 INTERACTIVE WEB MAPPING 1. .
. ..-

A simple HTML viewer with forms is very limited in terms of user interac-
tivity, especially when dealing with maps andspatial objects. To create more

interactive Web mapping, we need alternative viewers that can facilitate the
user to interact with the spatial object and maps directly. Therefore, dynamic
HTML and client-side applications such as plug-ins or help programs, Java
applets, and ActiveX controls were developed to handle maps and spatial
objects. These are dynamic or interactive viewers for users to directly interact
with spatial objects that are interactive Web mapping applications.

One major characteristic of the interactive Web mapping applications is
that they offer more interactions between the user and the client interface and
more client-side processing and functionalities than the static Web mapping
applications. Many current Internet GIs programs such as Arc IMS, Geo-
Media Web Map, MapXtreme, and MapGuide belong in this category.

Another characteristic of interactive Web mapping is that CGI extensions
are used as the middleware to mitigate the shortcomings of the CGI. These
CGI extensions include Netscape's NSAPI, Microsoft's ISAPI and ASP, Ap-
ple's WebObjects, Javasoft's servlets, Allaire's ColdFusion, and many others.
These CGI extensions generally perform better than the CGI scripts. The
common feature of these CGI workarounds is that they all run some sort of
server-side scripts (or plug-in codes) in the same address space as the Web
server.

Most current interactive Web GIs programs are based on this model, that
is, a dynamic viewer coupled with CGI or CGI extensions. This section will
describe the characteristics of different client viewers and server-side CGI
extensions.

4.4.1 Interactive Viewers

Client viewers are places for users to interact with maps and spatial objects.
Different interactive viewers with various functions have been developed us-
ing different programs and technologies, from very simple HTML interfaces
with forms as we discussed in the previous section to dynamic HTML and
to more advanced client-side applications such as plug-ins, ActiveX controls,
and Java applets. We will introduce four types of client viewers in the inter-
active Web mapping programs: DHTML viewer, GIS plug-ins, Java applets,
and ActiveX controls.

Key Concepts

The H T M L viewer is static or noninteractive for Web mapping.
DHTML makes plain HTML dynamic by using client-side scripting,
DOM, and CSS. Plug-in viewers are sofrware executables that run on
the browser to extend the capabilities of Web browsers. A Java applet
is an executable Java code that is downloadable from the server and
exe,cuted on the client at runtime. A Java applet viewer displays geo-
spatial information and handles requests. ActiveX viewers use ActiveX
controls to program the viewe,: An ActiveX control is a modular piece

178 TECHNOLOGY EVOLUTIONS OF WEB MAPPING .'

. .
of sofrware that perfonns tasks and cbmrnunicates inji~rmntion to other
programs and modules over the ~ntemet' via OLE.

4.4.1.1 DHTML Viewer The viewer is static or noninteractive for
Web mapping. After a page and map &loaded in the browser. they become
static. The only things a user can do in asstatic web page are:

. 2.. a .

. . If there is a link, click on it.
, ...

If there is a form or image form, fill it but and click on the submit button.
.. .
. -

The response to either of the above is-not all that quick because, in either
case, the page appears after a complete round trip to the server and back,
even for a simple response such as zoo&ng &to a map feature. This is where
DHTML comes in. _ . .

DHTML is just plain HTML that cah change even after a page has been
loaded into a browser. An area of a map can change color when the mouse
moves over it or a menu can drop down or a new popup window appear.
Most HTML elements can be made to react to user actions after the page
loads. The DHTML viewer has three major advantages over the static HTML
viewer:

. .

The Web page and the map will respond to user actions.
That response is immediate (without. making a round trip to the server).
No special plug-in is needed to instalk at the browser.

DHTML makes static HTML page dynainic by using the following:

1. Client-Side Scripti~~g client-siae scripting uses JavaScript and
VBScript to change HTML. ~ ~ ~ c r i ~ t works only in Microsoft Internet
Explorer, while JavaScript works in hther browsers as well.

2. Document Object Model The DOM is the hierarchy of elements that
are present in the browser. This includes browser properties such as the
browser's version number, window proierties such as window location
(the page's URI), and HTML elements such as (p) tags, or tables. For
example, you can point to the specific check box in a specific form in
a page and make it checked. Thus, by exposing the elements and their
properties to scripting languages, @-bwsers enable the user to manipulate
them. The DOM also specifies the..events that get triggered as a result
of a user action. For example, .'the DOM defines an event "on-
Mouseover" for a link. This enables you to write a script for something
to happen when a user passes the.mouse over that link.

3. Cascading Style Sheets (CSS) CSS not only let the user specify style
information in one place for an entire Web but also allow the user to
set style values in such a way tha t . '~ey can be easily manipulated by a

scripting language. By changing the CSS properties of a page element
(such as its color, position, or size), it is possible to change almost
anything about the way a page looks.

4.4.7.2 Plug-In Viewer Plug-in viewers are software executables that run
on the browser to extend the capabilities of Web browsers. Plug-in viewers
can support both vector data and raster images. The role of plug-in viewers
is to provide user interactivity with geospatial data and map images so that
the user can view the maps and select features and make queries directly on
the map. While plug-in viewers are small applications installed in the Web
browser, GIs helper programs can be large GIs applications or existing GIs
software that is located in the user's local machine. GIs software such as
ArcView, MapInfo, and GeoMedia can all be GIs helper programs. When the
Web browser detects a GIs data type in an HTML page, it can automatically
launch the respective GIs helper program (though this function is not yet
available for many existing desktop GIs programs).

Internet GIs Showcase: Brownfield Location Information System

The Brownfield Location Information System (BLIS) is Wisconsin's ef-
fort to promote the redevelopment of underused properties throughout
the state. Potential redevelopers can use the site's map and query system
to locate the tax-delinquent, abandoned, blighted, or hazardous site that
best fits his or her needs and selection criteria. BLIS is designed to help
commercial, industrial, and retail businesses locate reusable land while
simultaneously assisting landowners market their sites.

To provide easy access, BLIS was developed so that users need only
a MJeb browser that can handle HTML and JavaScript. There are no
applets or extra plug-ins required. Buttons and functions on the site are
intended to be intuitive, even to users who are not familiar with mapping
or GIs software. Users are able to perform drag-box zooms (without a
Java applet) and view the 10 best sites for their query criteria, not just
sites that meet all their criteria. Also, the map size is sizable variable
and will always fit the maximum available space in a user's browser.

Map clutter on BLIS was reduced by limiting which layers users are
able to toggle on and off and by setting zoom thresholds where certain
layers appear and disappear automatically. The incorporation of an
"identify" function lessens the need for labeling all features.

BLIS uses ArcIMS technology developed by ESRI for displaying and
interacting with a map.

Source: http: Ncomgis 1 .cornmerce.state. wi.usIwiscomp/blis~start.htm.

. /

180 TECHNOLOGY EVOLUTIONS OF WEB MAPPING-' 4.4 INTERACTIVE WEB MAPPING 181

In the case of direct feature data support, plug-in viewers can communicate
with vector geospatial data. Similar to' other plug-ins, GIs plug-in viewers
handle GIS data from a URI that is provided as a stream as i t amves from
the network. This allows a GIs plug-in to implement a progressive viewer
without seeing an entire stream. Individual plug-ins can request multiple data
streams simultaneously. . .

Figure 4.16 illustrates the worlung $roc& of a GIs plug-in viewer. When
the Web browser encounters a geospatial data type (most GIs data types are
unknown to Web browsers) in a Web page from a server, it will look for a
plug-in that is associated with that data' type and then load it. If a GIs plug-
in or helper program is not available.'in'..the client computer, it has to be
downloaded from the Web server over .the network. Once the GIs plug-in or
helper program is installed, it then conh~nicates directly with the GIs data
stream from the server.

. '
,' .

4.4.1.3 Java Applet Viewers Vieweis 'in the form of Java applets are ex-
ecutable Java code that is downloadable from the server and evecuted on the

: GIs Data

1 2 - . - .

,-
Figure 4.16 Work process of GIs pluglins. (Source: Peng, 1999.)

. . % .

Internet GIs Showcase: City of Nanaimo

The City of Nanaimo, Canada, has used MapGuide to create an on-line
mapping tool for public use. Nanaimo's city map provides users with
the ability to

find a street address on the map,
print a replacement garbage calendar,
review school catchment areas,
locate city parking lots,
locate parks and trails, and
search for common points of interest such as shopping centers,

schools, and hospiths.

The Civic Report is a Web-based document that provides information
about a selected property. The Civic Report provides

legal description information,
address information,
zoning information,
garbage calendar route information, and
sewer service information.

Source: http: Nwww.city.nanaimo.bc.ca/citymap.asp.

182 TECHNOLOGY EVOLUTIONS OF WEB MAPP!NG
. .
. . . .

client at runtime. Java applets initially. resiae on the Web server. They are
referenced inside an HTML document.~nd~executed by a Web browser at the
client side. These applet files are downsoaded and executed when a user con-
nects to the Web site and invokes the HTML.document containing a reference
(the (applet) tag in the older version of mML or the (Object) tag in HTML
4.0 or later) to the Java applet. The Java applet is then seamlessly integrated
inside the Web browser. Figure 4.17 illustrates the process of loading a Java
applet viewer.

Java viewers use a Java applet for displaying geospatial information and
handling requests. It allows the user tohteract directly with the spatial fea-
tures on the map. The Java viewer usually incorporates map-rendering and
data processing functions in the Java aiplet so that the user can render maps,
make queries, and do other processing'.inside the viewer without going back
to the map server.

Java viewers can support both featurk.data and map images. in the case of
supporting map images, the Java applet is simply a fancy display of map
images similar to the DHTML viewer.i~he user interacts with map images.
But all logic processing such as map rendering and query processing is con-

.. .
ducted at the server.

If the Java viewer supports streamed, feature data, the data server streams
the vector data to the Java viewer, and the user then interacts with the feature
data. Some or all processing can be performed at the client viewer. Java
viewers have the potential to support unlimited client-side processing. Feature
data that are streamed to the Java viewers we temporarily cached on the client
machine. The Java viewer establishes a'connection channel between the Java
viewer and the database server via a Jb?C drive. When the user's request
requires data that are not currently in the- cache, the request is sent to the

Send Java Applet / . . . and GIs Data
.' .

Figure 4.17 Work process of ~ a v a . applets. (Source: Peng, 1999.)
. .:

4.4 INTERACTIVE WEB MAPPING 183

server to either retrieve more data or process data residing on the server. The
temporary cache is removed when the Java viewer is closed. So the Java
viewer does not take any permanent disk space in the client's computer.

In addition to Java applets that work with a Web browser, a whole Java-
based viewer, Java Beans, can also be created to work as an independent
viewer or a mobile client agent.

Many GIs vendors are developing Java-based viewers, such as ESRI's
ArcIMS Java viewer (Figure 4.18).

4.4.7.4 ActiveX Viewer ActiveX viewers use ActiveX controls to program
the viewer. ActiveX was developed by Microsoft to "activate the Internet."
It builds on the OLE standard to provide a common framework for extending
the capability of Microsoft's Web browser, Internet Explorer (Chappell, 1996).

An ActiveX control is a modular piece of software that performs tasks and
communicates information to other programs and modules over the Internet
via OLE. It can also be used and reused by any programming language or

Figure 4.18 ESRI ArcIMS Java viewer.

184 TECHNOLOGY EVOLUTIONS OF WEB MAPPING

. , ..

application that supports the OLE stangard (Chappell, 1996). ActiveX controls
are general componentware that can plug into any application. There are many
different types of ActiveX controls, each with different capabilities and func-
tionalities. Client viewers implemented in ActiveX controls are created to
handle GIs data and as a graphic interface between the user and the feature
data andlor maps over the Web browbet They can be used just like plug-ins
and Java applets within Web pages. :. . , .

ActiveX viewers are referenced inside. an HTML document and executed
by a Web browser on the browser's qiachine. The GIs control is downloaded
from a Web server when it is neede'd o r i t might already be present on the
client machine if it was previously downloaded.

The ActiveX viewer can access a URI and retrieve GIs data just as a
standard Web browser client does. GIS.data are streamed asynchronously to
the GIs control as the information &ves from the network, making it pos-
sible to implement viewers and other interfaces that can progressively display
information. If the GIs control needs'more data than can be supplied through
a single data stream, multiple and simultaneous data streams can be requested
by the ActiveX viewer. ~urthermore,',ActiveX viewers can be set up to allow
the user to combine local data and streamed feature data from the server to
process request in the same ActiveX viewer. Figure 4.19 illustrates the simple
architecture of the ActiveX viewer. :;

While Java applets are in the form.ofbyte codes and have to run inside a
Java VM, Activex is native binary code and runs directly inside the com-
puter's native operating system. Beiiig a native code, ActiveX controls can
take full advantage of the local computer's computing power and have direct
access to all local platform functionality such as local files, local memory,
and other system resources that are unavailable to a Java applet. Therefore,

Figure 4.19 Work process of ~ c t i v e ~ controls. (Source: Pmg, 1999.)
. . I . *.

4.4 INTERACTIVE WEB MAPPING 185

compared with a Java applet, ActiveX components have better performance
(Shan and Earle, 1998).

However, this performance advantage also carries a price-portability and
safety concerns. First, because ActiveX controls are compiled to the native
executable format, different versions of ActiveX controls have to be made
available for all platforms. That means ActiveX controls are platform depen-
dent. This is in contrast with the Java applets, which are platform independent.
One Java applet code (theoretically) can be run on all platforms. Second,
because ActiveX controls are able to access to local files and other local
resources, they could pose greater danger to the users' local computers. Some-
one could write a vicious ActiveX code that could erase all local files. (We
will discuss the safety issues in more detail in Chapter 10.)

Figure 4.20 illustrates an example of the ActiveX viewer developed by
INTEGRAPH7s GeoMedia Web.

Another interesting implementation of the ActiveX controls is Citrix's
WinFrame Web Client ActiveX control (http:llwww.citrix.comi). The Win-
Frame Web Client ActiveX control can allow users to access GIs data and
applications remotely. WinFrame Web Client uses the techniques of Appli-
cation Launching and Embedding (ALE) to run applications remotely from a
Web page. Users can launch an application from a Web page by clicking on

J

APPLY 1 I

186 TECHNOLOGY EVOLUTIONS OF WEB MAPPING

.
a hyperlink. The server will launch ~-.GIs application in a window on the
user's local desktop. The launched application can run on its own window or
within the Web page (embedding). The-t&s' can then use this application as
if it were installed and running locally .on.lus or her own machine. They can
also use the application to edit and manipulate the information. save it to a
local file, or even save it back to the rembte site (if the file pern~issions allow).

In summary, the viewers for interactive'Web mapping could be as simple
as a dynamic HTML page or as complex. as a Java applet or ActiveX control.
But regardless of the form of the viewer, a client viewer should be able to
display a map, make a query, identify a j ia t i source, extract a subset of data
from a data server, and have the result rendered on the screen in the form of
a map image or a vector map. More advanced clients would have added
functions and capabilities, such as editing,.data integration, and spatial anal-
ysis. . .

. . 4.4.2 Server-Side CGI Extensions

Those client viewers are linked with a .&ap server and data server via CGI
or CGI extensions. To overcome the previously discussed shortcomings of
the CGI, several extensions are used tq extend the capabilities of CGI in
interactive Web mapping. Rather than create,a separate process and close the
process for each request received, as the'CGI does, the server-side CGI ex-
tensions stay in the memory and are alwhys ready to service other requests.
Furthermore, unlike CGI programs that run :in different processes, the CGI
extensions run server-side scripts in the, same address as the Web server.
Therefore, all the resources that are made available by the HTTP server pro-
cess are also available to CGI extensions: Loading CGI extension programs
in-process can improve performance considerably compared to loading them
into a new process. We have covered NSAPI and ISAPI in the last section;
we will discuss servlets. ASP, and ColdFusion here.

4.4.2.1 Servlets . .

Key Concepts

Servlets are modules of Java code thatjrunin the Web server to extend
the capabilities of the HTTP server: ASP.is a Web server erteizsion to
recerve and process user requests on the Microsoji Internet hjormation
Server (IIS). ColdFusion is n Web application server that runs on a --- .
Web server that works with Linux. ~ol&is, and Windows senws.

Similar to "applets" on the client side thatare used to extend the capabilities
of the Web client, servlets are modules of Java code that run in the Web
server to extend the capabilities of the HTTP server (e.g., to answer client
requests). Servlets are commonly used with HTTP servers, so they are often

4.4 INTERACTIVE WEB MAPPING 187

referred to as "HTTP servlets," even though they can be used with any client/
server protocols. Since servlets are written in the highly portable Java lan-
guage and follow a standard framework, they can be used independently of
server types and operating systems.

HTTP servlets are similar to CGI scripts and usually have the following
major functions (Orfali et al., 1999):

processing andlor storing data submitted by an HTML form;
providing dynamic contents (e.g., returning the results of a database
query to the client);
managing state information on top of the stateless HTTP (e.g., managing
many concurrent requests for the same map services);
initiating a connection to a database and maintaining its connection
across requests;
passing a client request to another servlet, a feature called servlet chain-
ing; and
providing an interface between Web users and a legacy (mainframe) ap-
plication and its database.

Compared to CGI, servlets have several advantages (Orfali et al., 1999):

While CGI runs in a separate process, a servlet does not run in a separate
process. This removes the overhead of creating a new process for each
request every time, thus improving the performance.
Similar to ISAPI and NSAPI DLL, a servlet stays active in memory
between requests, while a CGI program needs to be loaded and started
for each request. This is another way to increase responsiveness and
performance.
There is no need to create multiple instances to respond to multiple re-
quests. Only a single instance is needed to answer all requests concur-
rently. This saves memory and allows a servlet to easily manage
persistent data. Servlets are multithread safe.
A servlet can be run by a servlet engine or servlet container in a restric-
tive sandbox just like an applet runs in a Web browser's Java VM, which
increases the server security.

Because of these, features, servlets become a pretty good alternative to the
CGI programs, especially for simple applications. Servlets are better than CGI
at accepting form input, interacting with a single database, and dynamically
generating an HTML response page. They provide functions to easily extract
the HTTP name-value pairs and compose a dynamic HTTP response.

Servlets do a good job for a simple CGI-like request-response system.
However, the servlet is just a little better than CGI as Web middleware. It is

. . .
188 TECHNOLOGY EVOLUTIONS OF WEB MA.PPING

. .
still very primitive. Since servlets use a:.generic API, they have a set of
predefined methods. Therefore, you have to do your own marshaling and
unmarshaling of parameters. Also, serdets do not support typed interfaces;
you have to create your own command:.forrnats. Servlets do not fit well with
the distributed-object system. They cannot take advantage of object interfaces
and do not have the features that many:scalable server-side component tech-
nologies provide, such as transaction (Orfali et al., 1999).

4.4.2.2 Active Server Page An ASP is another server-side feature or Web
server extension to receive and process user requests on the Microsoft 11s. It
is used to replace the CGI scripts on the Web server. An ASP is essentially
an HTML page that includes one or more scripts (small embedded programs).
These scripts are processed on a ~ i c r o s o f t . ~ e b server before the page is sent
to the user. he user accesses the ASy.'Web page on the Web browser; the
user requests are then sent to the ASP s'cripts on the server. The script in the
Web page at the server then accesses,data from a database and builds or
customizes a page on the fly before sending it back to the user at the browser.
In other words, the server-side ASP script 'simply creates a regular HTML
page or ASP file by processing the user.:requests and/or extracting data from
the database on the server.

ASP scripts can be written in either VBScript or Jscript. User requests can
be fulfilled using ADO program statements. Scripts can reside in either the
server side or the client side. ~1ient-side.kd~ts create more interactivity while
scripts on the server side are more versatilkand have no limitation on brows-
ers.

4.4.2.3 ColdFusion ColdFusion was h&eloped by the Allaire Corpora-
tion, which has merged with Macromedia; to be an alternative to Per1 and
other CGI technologies. It is a Web application server that runs on a Web
server that works with Linux, Solaris, and Windows servers. Similar to ASP,
the ColdFusion Web application server wqks with the HTTP server to process
user requests for Web pages. When a user sends a request from a Web browser
for a ColdFusion page, the ColdFusion application server executes the scripts
or programs the page contains. . .

ColdFusion can create and modify vaijables just like other languages. It
has some built-in functions for perforrdng #some complicated tasks. Cold-
Fusion applications can access databases using Microsoft's OLE DB, ODBC,
or drivers that access Oracle and Sybase databases. Just like ASP, ColdFusion
uses standard SQL to link Web pages and Web applications with the back-
end data servers to retrieve. store. format; &d present inforrulltion dynami-
cally. . .

ColdFusion uses its proprietary markup..language CFML (ColdFusion
Markup Language) to make web program&ng. CFML encompasses HTML
and XML and is tag based. A JIT compilef Nms the CFML into Web pages
to be served to the Web client. CFML has 70+ CFML tags and over 200
custom functions. It also offers tools similir.to those at the server side CGI

4.5 OPENGIS WMS IMPLEMENTATION INTERFACE SPECIFICATIONS
189

extensions to extend the server-side functions. ColdFusion can be coordinated
with distributed applications that use CORBA or Microsoft's DCOM to in-
teract with other network applications. ColdFusion also has tags to embed
COM, CORBA objects, and Java applets/ servlets.

In addition to the rniddleware or application server between the Web server
and the map server, there are other services on the server, including catalog
services, load balance services, and state services. Catalog services keep track
of where the data are in a distributed environment; load balance services
balance the load of different server functions; while the state services keep
the state of user requests.

These CGI-like middleware and other services are connected with mapping
servers and database servers. It is the mapping server that fulfils the user
request and makes maps. The rniddleware is simply a translator that receives
reauests from the Web browser and forwards the requests in a proper format

1

to the map server for process.
Notice that in the interactive Web mapping applications, although the client

side could use the Java applets and ActiveX controls, the rniddleware is still
CGI or CGI extensions. This Java-to-CGI clientlserver approach is still the
traditional Web clientlserver architecture. It is different from the distributed
GIs, the next phase of distributed GIs, as we will discuss in the next chapter.

Although interactive mapping programs, whether static or interactive, are
very popular and well recognized in the GIs community, there are common
problems: The performance is slow, the functions are limited, and they are
proprietary and not interoperable. Different Web mapping programs were de-
veloped in different database frameworks and using different technologies.
The heterogeneous techniques and software programs prevented the integra-
tion and sharing of information among these Web mapping programs. Fur-
thermore, it is difficult to migrate technology from one platform and one stage
to another, as demonstrated in the ADL project.

The problem will get worse as more vendors start developing Web mapping
programs. OGC has been making efforts to develop a set of standards to guide
the development of Web mapping programs so that they can be interoperable.
Therefore, OGC developed Web Map Server (WMS) implementation infor-
mation specifications based on some Web mapping testbeds or pilot programs,
which represents the first effort to standardize the implementation of the Web
mapping programs.

4.5 OPENGIS WMS IMPLEMENTATION INTERFACE
SPECIFICATIONS

Key Concepts

The OpenGIS W M S implementation interface specifications provide
'

guidelines for current Web map servers with the specifrations of HTTP
contents and URI cornrnunication syntax. Its specifications also lay out

190 TECHNOLOGY EVOLUTIONS OF WEB MAPPING

Internet GIs Showcase: Mason County, Kentucky, PVA Project
., .

This demonstration model was created t o showcase the benefits of an
Internetlintranet-based mapping sptem. The local Property Valuation
Administration (PVA) office, with cooperation from the State of Ken-
tucky, provided the digital, graphical;.tabular, and geographic data for

. . this project
The application combines the PVA database information with digital

maps and images. The process is fulfilled by incorporating a dynamic
HTML (Web page) editor. The ~ e 6 p a g e design program ~ ~ s e d in this
application was ColdFusion, from Allair& Corporation. ColdFusion al-
lowed the developer to easily integrate the database information into an
HTML (Web page) format. Also, Cold&kion was used to build dynamic
queries from the database and relate them to the MapGuide viewer, a

. . Web browser client.
l k s site combines the ~ o l d ~ u s i & pages with the viewer to have a

complete page showing the PVA tracts and database entries from simple
queries. In the next stage, actual lot s w e y drawings, descriptions, pho- .
tos, and so on, will be attached to each .parcel.

Source: http: Nhq.carlsonsw.com

4.5 OPENGIS WMS IMPLEMENTATION INTERFACE SPECIFICATIONS 191

the major tasks of Internet map servers, which can be applied in the
architecture of distributed GISewices.

4.5.1 Background and Overview

One of the main goals of OGC is to come up with a set of specifications to
be used as a guide to Internet GIs design for different software vendors so
that their designed systems can be communicated or interoperated with each
other. OGC's interoperability programs cover a range of areas, from geospatial
data to geospatial processing. Web mapping is one of them. OpenGIS spec-
ifications result from common understandings and the consensus of the GIs
vendor industry as well as from experiences learned from different testbeds
or pilot programs.

OGC's Web mapping activities started with a WWW mapping framework
by Doyle (1997). A task force of OGC was formed to come up with a con-
sensus position on the WWW mapping Special Interest Groups (SIG) that is
described in "User Interaction with Geospatial Data" by Cuthbert (1997).
This document presents an abstraction for the display of geospatial data. It
provides a common set of terms that can be used to describe a variety of
software implementations. Based on the basic ideas from Doyle (1997) and
Cuthbert (1997) as well as from "A Web Mapping Scenario" by Gardels
(1998), OGC sponsored the Web Mapping Testbed (WMT) initiative. The
WMT initiative invited GIs software vendors as well as governmental agen-
cies to design pilot Web mapping systems to test implement the ideas in the
WWW mapping framework and OGC consensus position papers. The WMT
demonstration was made in September 1999. The OpenGIS WMS interface
implementation specification was subsequently published in April 2000.

A request for a Quotation and a call for participation in the OGC Web
Mapping Testbed Phase I1 (WMT-2) were made in April 2000 to further test
and expand the Web mapping specifications. The goal of WMT-2 was to
rapidly develop interface specifications that lead to Standards-based Com-
mercial-Off-The-Shelf (SCOTS) implementations of software that suppoa use
and exploitation of geospatial data and images over the WWW. WMT-2 builds
upon the framework of specifications that have already been adopted or will
soon be adopted by OGC. WMT-2 efforts will help refine existing OGC spec-
ifications and may create new specifications. Ultimately, this initiative will
lead to standardized geospatial tools from multiple vendors that satisfy re-
quirements for Web mapping (OGC Project Document 00-028). The OpenGIS
WMS implementation interface specifications provide guidelines for current
WMSs with the specifications of HTTP contents and URI communication
syntax. The WMS specifications also lay out the major tasks of Internet map
servers that can be applied in the architecture of distributed GIServices.

The major content of the OpenGIS WMS specifications focuses on how to
describe a Web map server and map services with standardized URI syntaxes
and semantics. A URI is a short string that identifies resources in the Web.

192 TECHNOLOGY WOLUTIONS OF WEB IdAPPING

The format of URI strings indicates-the syntax and semantics of formalized
information for location and access to resources via the Internet.

The OpenGIS WMS specificatiofis standardize the syntax and semantic
contents of the URIs for WMSs and focus on the three major tasks. In general,
"a standard web browser can ask a Map Server to do these things just by
submitting requests in the form of ~n i fo rm Resource Locators. The content
of such URIs depends on which of the three tasks is requested" (OGC, 2000,
p. 9). The WMS implementation interface specification indicates that a WMS
should be able to (OGC, 2000, p. 9) .. . : .

produce a map (as a picture, as a' s.eries of graphical elements, or as a
packaged set of geographic feature data),
answer basic queries about the content of the map, and
tell other programs what maps it can produce and whlch of those can

..' . be queried further.

4.5.2 WMS Architecture . .
Besides the specification of three major WMS tasks, the WMS specifications
also identify four main processing stages in a WMS: filter service, display
element generator, render service, and display service. The concept of four
processing stages is derived from ~ u t h b e k (1997), who describes geospatial
data visualization from data to a map. a s8 flow line with four processes, as
shown in Figure 4.21 :

. .
1. the selection of geospatial data ip be displayed,
2. the generation of display elerneiti ffom the selected geospatial data,
3. the rendering of display elemerkiidto!a rendered map, and
4. the display of the rendered map, fo the user.

. .

These four processes can be considered as service components. Each service
component becomes a client of the other component, and each has interfaces
that can be invoked by clients of that seri.ice. Depending on the location of
these service components on the network;the whole process can be described
as systems with "thin," "medium," and "thjck" clients (Figure 4.22).

If only the rendered rnap is carried'over the Internet to the client, it would
be a thin-client system with v i r t ~ a l ~ ~ noclient-side capabilities. A typical
example of this is displaying rendered.maps as GIF files.
If the display elements are canied.:bver the Internet to the Web browser,
it would be a medium-client system,:.which allows for a limited client-
side processing, such as panning and-zooming and selection.

Image
Constraint

'

1 Data

Figure 4.21 Map display process.

Source
(Figure reprinted with permission from OGC.)

H Thin Client

' J Medium Client

1 Thick Client

Data
Source

Figure 4.22 System partitions. (Figure reprinted with permission from OGC.)

If the geospatial data and display element generator service is carried
over the Internet to the Web cliknt; it'would be a thick-client system with
unlimited client-side capabi1iti.e~: : .

OGC later abandoned the use of "thin," "medium," and "thick" client in
its WMS interface implementation seif icat ion because of some very impre-
cise definitions of "thin" and "thick" client used in the marketing literature.
Instead, OGC uses the lund of infopnation presented at the Web client to
categorize the Web mapping services. This led to the three "cases": namely
the "picture case," the "graphic element-case," and the "data or feature case"
(OGC, 2000).

In the picture case, what travels acr&s.the Internet to the Web browser in
response to a client's request is essentially a picture of a map in such format
as a GIF, JPEG, or PNG. The map'image was constructed by a map server
and was transported to the Web client.

In the graphic element case, what travels to the Web client is a packaged
set of individual elements, typicall$.already in a projected reference system
and with already defined symbolizatibn for geographic features. Some graphic
element formats include Scalable v e c t o r - ~ r a ~ h i c s (SVG) and Web Computer
Graphics Metafile (CGM). For example, a freeway might be a thick red
polyline, a lake could be a blue p61ygon, and so on. Some of the graphic
elements could themselves be pictures like a bitmap or pretlrawn fragment of
a map, so the graphic element case. may also include the picture case as a

. ..
subset. , . .

Finally, the data or feature case".provides the ability to send geographic
feature data from the server to the clie$. These feature data can be processed
and manipulated directly on the Web client using display element generators
and map-rendering tools. XML was tested in WMT Phase I to encode
OpenGIS simple features, which resulted in an OGC specification of GML,
which can be used to transport data:from the server to the client.

4.5.2.1 WMS Specifications for the Picture Case The WMS imple-
mentation specification covers primarily the picture case. As mentioned be-
fore, in the picture case, only pictures of maps are presented at the Web client;
all other map rendering and data selections are conducted in the server, as
shown in Figure 4.23. To simplify things, we can consider the server as one
unit and focus on the functions of the server, as shown in Figure 4.24.

There are three functions that a map server could or should have in order
to answer the user's request. First, the map server should be able to provide
users with maps at the Web browser: Second, it needs to (may not have to)
provide users with information about the maps, including information about
the specific areas of the map and specific layers of the map. Lastly, the map
server should be able to provide information about what interfaces a map
server supports and what map layersitecan serve. These functions are sup-
ported by three WMS interfaces: miij interface, feature information interface,

1 *.

4.5 OPENGIS WMS IMPLEMENTATION INTERFACE SPECIFICATIONS
195

Figure 4.23 WMT Implementation of the picture case. (Figure reprinted with per-
mission from OGC.)

Figure 4.24 Functions of the server. (Figure reprinted with permission from OGC.)

and capabilities interface. Individually, tlit$are sometimes informally referred
to as GetMap, GetFeatureInfo, and ~ k t ~ a ~ a b i l i t i e s .

Map Request (GetMap) lnterfaces The design of map request interfaces
focuses on the display and production of :Web-based map services: "To pro-
duce a map, the URI parameters indicate.which portion of the Earth is to be
mapped, the coordinate system to be used, the type(s) of information to be
shown, the desired output format, and perhaps the output size. rendering style,
or other parameters" (OGC, 2000,. p. 9). The parameters of map request
interfaces include the map layers, picture format, picture size, background
color, and so on. Table 4.1 illustrates th.e parameters used in the map request
interfaces.

Feature Request (GetFeature) Interfaces The feature request interfaces
identify the request mechanisms for:.map contents and feature attributes.

.. .
' ..

TABLE 4.1 Map Request Interfaces . . : .

URL Component Description

http://server_address/path/script? URL+'pi-efix of server

(Section 6.2.5.1.1)
WMTVER= 1.0.0 Request version, required

. (Section 6.2.5.1.2)
REQUEST=rnap ~ e ~ u e s t name, required
LAYERS =layerlist Comma-separated list of one or more map

STYLES = s tyle-lis t
layers, required

Comma-separated list of one rendering.
. . . ~ t ~ l e , ~ e r requested layer, required "

SRS =srsident%er spatial reference system (SRS), required
BBOX =xrnin,ymin,xmax,ymax ~ o u n d i h ~ box comers (lower left. uooer

L L

'right) in SRS units, required
WIDTH=outputLwidth Width in pixels of map picture, required
HEIGHT=output+height aeight in pixels of map picture, required
FORMAT=outpufformat Output format of map, required ,

TRANSPARENT= true-orfalse "TRUE!' I "FALSE" : If TRUE, then the
"background color of the picture is to be

made transparent if the image format

. .
.si.~ppo:rts transparency; optional;

BGCOLOR = color-value
'defduit =FALSE

A hexadecimal red-green-blue color value
(O!gbb) for the background color;
optional; default= OxFFFFFF

EXCEPTIONS =exceptionformat The fformat in which exceptins are to be
rep&ed by the map server; optional;
default = OxFFFFFF

Vendor-specific parameters Section 6.2.5.1.5

Source: OGC, 2000, p. 23, with permission from OGC.

4.5 OPENGIS WMS IMPLEMENTATION INTERFACE SPECIFICATIONS 197

To query the content of the map features, the URI parameters indicate what
map (layer) is being queried and which location on the map is of interest
(X, Y coordinates). Table 4.2 indicates the elements of feature request inter-
faces.

Capabilities Request (GetCapabilities) Interfaces The capabilities request
interfaces are used to provide extensive map services, such as catalog ser-
vices or metadata queries, in addition to the basic map display and attribute
query (Table 4.3). For example, to ask a map server about its holdings,
the URI parameters can be included in the capabilities requests, such as
"Database =Colorado + California." However, current OpenGIS WMS speci-
fications do not specify the exact contents of the GetCapabilities interfaces.
The WMS specifications only suggest the possible use of GetCapabilities
interfaces and leave the detailed design of the interfaces and contents to soft-
ware vendors with their vendor-specific parameters.

Figure 4.24 introduces another element, the service registry. It is a com-
ponent that delivers information about available services of different map
servers to any client. The service registry identifies services through a search
of metadata across map servers by invoking the capabilities request. The
service registry also provides interface for publishing service descriptions to
a publisher client. In WMT Phase I, a service registry was constructed using
the OpenGIS catalog services specification (OGC, 1999).

TABLE 4.2 Feature Request Interfaces

URL Component Description

http://server-address/path/script? URL prefix of server
(Section 6.2.5.1.1)

WMTVER= 1.0.0 Request version; required
(Section 6.2.5.1.2)

REQUEST=featureinfo (map Request name; copy of map request
request copy) parameters that generated the map for

which information is desired (Section
6.2.8.2)

QUERYLAYERS =layerlist Comma-separated list of one or more
layers to be queried

INFO_FORMAT = outputformat Return format of feature information;
optional; default = MIME

FEATURE-COUNT =number How many features to return
1; information about; optional; default= 1
b X = pixeLcolumn X coordinate in pixels of feature
li (measured from upper left corner=O)
F

Y=pixeLrow Y coordinate in pixels of feature

8 (measured from upper left comer = 0)

Vendor-specific parameters (section 6.2.5.1.5)

Source: OGC, 2000, p. 30, with permission from OGC.

198 TECHNOLOGY EVOLUTIONS OF WEB MAPPING

. . . .
TABLE 4.3 Capabilities Request ~nterfaces

. .
URL Component

. . Ilescription
http://serveraddress/path/scri pt? URL prefix of server

. . (Section 6.2.5.1.1)

Request version;

. . required
. . (Section 6.2.5.1.2)
I

. . . Request name;
. . - required

Vendor-specific parameters . .. Section 6.2.5.1.5

Source: OGC, 2000, p. 22. with permission from.OGC. .

In a distributed Internet environment. there are many map servers across
the Internet. Therefore, a "cascading map server" should be used to aggregate
the capabilities of the individual map ser& into one logical "place." The
cascading map server can function as b0th.a client and a server. It is a client
to access many other map servers, while it i s a map server to other Web
browser clients. Furthermore, a cascading map server can also perform ad-
ditional services. For example, a cascading :map server can convert many
different graphics formats (e.g., PNG, JPEG) into GIF format. This would
allow any viewer clients to display any..output from different map servers.
Similarly, a cascading map server might. perform coordinate transformations
on behalf of other servers. . .

. .

, 4.5.2.2 WMS Specifications for t k ~t-aphic Element Case The
graphic element case is the medium-cliknt model that the client-side machines
can provide both display and render sekides (Figure 4.25). The servers will
process the geodata from the GIs databases and generate well-defined geodata
objects with associated symbols and colors. AutoDesk's MapGuide is one
example of the graphic element case. The advantage of the graphic element
case is that the combination of render and display services can allow more
interactive user manipulation of map features, such as the vector-based
highlights/selections and dynamic graphic display elements. In the graphic
element case, map users can create a new graphic element on the client side
and send it back to the server for updating: (such as the map notes function
in MapGuide). The response time and disp1ay:perfomance is faster and better
than the picture case, especially in the zoopjn , zoom-out types of display
functions. However, map users have to download specialized Web plug-ins,
ActiveX controls, or Java applets besides. the regular Web browsers in order
to see the graphic elements. The implementation of the WMS is more difficult
than the picture cases because the graphic element case needs to modify the
functions of the HTTP servers and add a:middleware on the server, such as
a Java servlet engine or CGI, for comm&kation between Web servers, GIs
databases, and client-side viewers.

Internet GIs Showcase: Internet GIs at Oregon State University

An exciting development with regard to Internet GIs is its use as a portal
for GIs functionality as well as data distribution (e.g., Xue et al., 2002).
Oregon State University (OrSt) researchers involved in developing Inter-
net GIs applications along these lines include faculty and graduate stu-
dents from the Departments of Geosciences, Entymology, Forest Science,
Soil and Crop Science, Computer Science, and Bioengineering, the Ma-
rine Resource Management Program, and the Northwest Alliance for
Computational Science and Engineering. Designs and applications range
from the simple presentation of data via Web mapping to more complex
signal analysis, real-time scientific collaboration and the incorporation of
environmental models and decision support. For example, entymologists
at the OrSt Integrated Plant Protection Center are developing a "public
access GIs" using GRASSLinks (ippc2.orst.edu/ glinks I) in order to in-
tegrate weather and climate data with soils, topography, insect distribu-
tion, and other environmental layers for the purposes of phenological
(biology related to climate), population, and disease risk modeling. Their
applications also include a real-time, multiresolution climate mapping
expert system as well as the serving of national ecoregion GIs layers and
maps in collaboration with EPA.

(i.e., linking data to
data) is desired and
needed, OrSt re-
searchers, in col-
laboration with
geologists and
computer scientists
at the University of
Oregon and com-
puter scientists at

the Evergreen State College (Olympia, Washington), are building the
Virtual Research Vessel (oregonstate.eduldeptlvrv), an experimental
linkage of Internet GIs to additional database support, tool composition,
and numerical models. Major objectives include the refinement of nu-
merical simulations, better exploration of relationships between obser-
vations of the seafloor made with various instruments and vehicles, and
the quantitative evaluation of scientific hypotheses. In this regard, In-
ternet GIs is viewed as a preliminary step toward widespread data access
rather than as a final solution. Better support for analysis, modeling, and
decision support within or connected to Internet GIs should move users
beyond the "data-to-data" mode toward "data-to-models" and "data-

The Additional showcase
examples include

The H.J. Andrews
Experimental
Forest
(www.fsl.orst.edu/
aims / websitel
h j W ,

Yolo County Sediment and Soil ~ n d y s e s (yolo.een.orst.edu/
yolo.net), and

Virtual Oregon (virtual-oregon.nac$e.prg).
' . .

In addition, the following Internet GIs research questions are being
considered: . .

How should data models and data structures for Internet GIs
differ from conventional GIs dath. structures?
Are there standard metrics for GIs functionality that should be
developed for specific applicatiori domains?
What are the appropriate measures of performance for lnternet
GIs? . .

What are the primary barriers to the usability of most Internet
GIs sites? Usability engineering techniques are being investigated
and deployed and multilevel Webpdatabase interfaces are being
developed for Internet GIs to enable customized access for
meeting the needs of very different bser groups.
To what end should Internet GIs. be developed? It is normally
best used with broadband access.in 'order to get satisfactory
results. Yet, according to ~c~overn . ' (2001) , who cited statistics
from Netvalue, only 11% of Americqn, 5% of German, 4% of
French, and 3% of British household$ had such access in 2001.
Given the predominance of Windews-based systems, what is the
future of UNIX/Linux open-source GIS for the Web, and how
can these toolkits be exploited and proliferated'?
Should Internet GIs be an "add-on" to standard Web browsers or
cross-platform languages such as'.Java?

4.5 OPENGIS WMS IMPLEMENTATION INTERFACE SPECIFICATIONS 201

Figure 4.25 Graphic element case. (Figure reprinted with permission from OGC,
2000, p. 15.)

4.5.2.3 WMS Specifications for the Data Case The data (feature) case
is the thick-client architecture where the client-side machines can perform
display, render, and Display Element Generation (DEG) services (Figure
4.26). The servers will only be responsible for communicating GIs databases
and the client-side map viewers. The communication between the client-side
map viewers and servers may use XML or GML to specify the geodata ele-
ments and map display properties. All the map tasks, such as projections and

202 TECHNOLOGY EVOLUTIONS OF WEB MAPPING

Figure 4.26 Data case. (Figure reprinted. with permission from O K , 2000, p. 15.)

symbol selections, will be performed .locally in a viewer. ESRI's ArcIMS
feature service is one of the examplesaf the, data or feature case. The advan-
tage of the data case is that it allows users to have the most freedom in
manipulating geographic data items. users can change the symbols and colors
of map features locally without sendkg requests to the servers. Also, users
can display both the Web-based map fe&res with the data layers from local
machines in local hard drives. Since the: client viewer already has all the
display capabilities, map users may useLthe client viewer to perform basic
GIs operations, such as buffering and'overlay operations However, the map
users may need to pay client-side sofwdre license fees in the data case ar-
rangement because such powerful cliknt-side map browsers can be used as
regular GIs software packages. . .

4.5 OPENGIS WMS IMPLEMENTATION INTERFACE SPECIFICATIONS 203

In general, the three case examples have their own advantages and disad-
vantages. Currently, the picture case is the most popular framework adopted
by the GIs industry. However, the picture case only provides limited map
display functions and less user interactions. Along with the progress of Web
mapping and information technologies, the data case and the graphic element
case may become more popular than the picture case in the future. The WMS
implementation interface specifications (version 1 .O) only focus on the picture
case (thin clients) with the standardization of URI syntax and semantic con-
tents. The next version of WMS may focus on the graphic element cases and
the data cases with the adoption of GML applications.

The three cases in the WMS specifications demonstrate that different types
of GIServices may need to adopt different types of software architecture.
However, the software models proposed in the OpenGIS WMS specifications
do not provide an approach for dynamically changing the architecture of Web
map services. For example, the software framework in the picture case will
not be able to upgrade to the graphic element case or data case if client-side
map users ask for a higher level of map services or want to change their map
applications. The ad hoc WMS specifications do not provide a flexible mech-
anism for migrating a software framework from one case to another.

One possible solution for providing an upgradable software framework for
WMSs is to adopt the dynamic GIServices architecture proposed in this book.
By adopting the dynamic framework proposed in Chapter 5 , the WMS soft-
ware framework can be easily upgraded from the picture case to the graphic
element case or the data case by relocating the map service elements. Figure
4.27 illustrates such a dynamic architecture for Web map services, where each
service element can be freely moved or relocated among client or server-side
machines. This dynamic architecture will be able to provide a flexible soft-
ware architecture for Web map services.

I

I Figure 4.27 illustrates that different map users can access the same server
that provides map services in either the picture case (scenario A) or the

f graphic element case (scenario B). For example, scenario A could be that a
map user wants to display road maps in Boulder, Colorado, and the client
machine only requires display services (the picture case is the best choice).
Scenario B could be that a map user wants to find out the top 10 cities in the
United States with the highest population growth rate. This scenario may
require advanced map query capabilities and more flexible map display func-
tions. Thus, the client machine could dynamically download a render service
element from a server to the client machine (the graphic element case). By
introducing the GIs component container and the dynamic GIServices archi-
tecture, map users can download different types of map service components
based on their needs from servers to clients or vise versa. The dynamic change
of the architecture will provide more flexible, upgradable, and user-oriented
Web map services for users.

The WMS interface specifications deal primarily with the interfaces on the
Web server. It is part of a more general Web mapping architecture that in-
volves many distributed map servers on the Internet.

Scenario A (Thin Client)
' Scenario B (Medium Client)

Figure 4.27 Dynamic architeqture for Web map services.

Web mapping is still a preliminary CIS program that has very limited
functions. To turn the Web mapping probam into a truly distributed GIs, we
need to rely on the more advanced distiibuted-component technology and its
standards. In the next two chapters, we. will introduce these more advanced
distributed-component technologies and 'their emerging standards.

. .

WEB RESOURCES
. .

Descriptions . . URL
Xerox Map Viewer
GRASSLinks
ADL
DL1 Phase I
DL1 Phase I1
OGC
ISO/TC 21 1
ESRI ArcIMS Java

viewer

http://mapweb.~arcCxerox.com/map (it is offline now)
http:/lw ww.regis~berkeley.edu/grasslinks
http:/lwww.ale~mdria.ucsb.edu
http:/lwww.dli2.fisf,gov/dlione
http:/lwww.dli2.nsf.gov
http://www.opengis.org
http://www.isotc2'll .org
http:Nwww.esri.~omlsoftware/intemetmaps/index.html

GeoMedia ActiveX http:/lwww.intergraph.com/gis/gmwm
viewer . .

REFERENCES 205

Visa ATM locator http://www.visa.com
MapQues t http://www.mapquest.com
MapBlast ! http://www.mapblast.com

REFERENCES

Buehler, K., and McKee, L. (Eds.) (1996). The OpenGISm Guide: Introduction to
Interoperable Geoprocessing. Wayland, Massachusetts: Open GIs Consortium.

Buehler, K., and McKee, L. (Eds.). (1998). The OpenGISB Guide: Introduction to
Interoperable Geoprocessing and the OpenGIS Specijication, 3rd ed. Wayland,
Massachusetts: Open GIs Consortium. URL: http:llwww.opengis.org 1 techno 1
guide.htm, May 1 1, 2000.

Buttenfield, B. P. (1998). Looking Forward: Geographic Information Services and Li-
braries in the Future. Cartography and Geographic Information Systems, 25(3), pp.
161-171.

Buttenfield, B. P., and Goodchild, M. F. (1996). The Alexandria Digital Library Pro-
ject: Distributed Library Services for Spatially Referenced Data. In Proceedings of
GIS/LIS'96, Denver, Colorado. Bethesda, Maryland: American Society for Photo-
grammetry and Remote Sensing, pp. 76-84.

Chappell, D. (1996). Understanding ActiveX and OLE. Redmond, Washington: Micro-
soft Press.

Cook, S., and Daniels, J. (1994). Designing Object Systems: Object-Oriented Modeling
with. Syntropy. Englewood Cliffs, New Jersey: Prentice-Hall.

Cuthbert, A. (1997). User Interaction with Geospatial Data. OpenGIS Project Docu-
ment 98-060. Wayland, Massachusetts: Open GIs Consortium.

Doyle, A. (1977). WWW Mapping Framework. OpenGIS Project Document 97-007.
Wayland, Massachusetts: Open GIs Consortium.

Gardels, K. (1996). The Open GIs Approach to Distributed Geodata and Geoprocess-
ing. In Proceedings of the Third International Conference on Integrating GIS and
Environmental Modeling, Santa Fe, New Mexico, National Center for Geographic
Information and Analysis (NCGIA), CD-ROM.

Gardels, K. (1998). A Web Mapping Scenario. OpenGIS Project Document 98-068.
Wayland, Massachusetts: Open GIs Consortium.

Goodchild, M. F. (1995). Alexandria Digital Library: Report on a Workshop on Meta-
data, Santa Barbara, California. URL: http://alexandria.sdc.ucsb.edu/public-
documents/metadata~metadataws.html, May 11, 2000.

Huse, S. M. (1995). GRASSLinks: A New Model for Spatial Information Access in
Environmental Planning. Unpublished Ph.D. dissertation, University of California
at Berkeley, Department of Landscape Architecture, Berkeley, California.

ISOITC 21 1 Chairman. (1998). Draft Agreement between Open GIS Consortium, Inc.
and ISO/TC 211. ISOITC 211-N563.

McGovern, G., 2001. The technology productivity paradox, New Thinking, 6(42), http:
llwww.genymcgovem.com/nt/200 11nt200 1 110_299produ~tivity.htm. Accessed 22
July 2002.

206 TECHNOLOGY EVOLUTIONS OF WEB'MA'PPING

National Science Foundation. (1 994). .NSF Announces Awards for Digital Libraries
Research. NSF PR 94-52. NSF: Washington, DC.

Open GIs Consortium (O W) (1998). &%e .OpenGIs Abstract Specrfication, Version 3.
Way land, Massachusetts: Open GIs' Consortium. URL: http://w w w.opengis.org/
techno/specs.htm, May 11, 2000.

Open GIs Consortium (OGC) (1999).',7%e OpenGIS Abstract Specijication, Version
4.0. Wayland, Massachusetts: Open GIs Consortium. URL: http:ilwww.opengis.org/
public/abstract/99- 1 1 3 .pdf.

Open GIs Consortium (OGC) (2000). OpenGIS Web Map Server Interface Implemen-
tation Specification, Revision 1.0.0.. Wayland, Massachusetts: Open GIs Consor-
tium.

Open GIs Consortium (OGC) (2001). d p e n ~ L S Web Map Server Interface Implemen-
tation Specification, Revision 1 .1 .O. .Wayland, Massachusetts: Open GIs Consor-
tium. URL: http://www.opengis.org/t~chno/specs.hrm, September 1 1, 2001.

Orfali, R., Harkey, D., and Edwards, I. '(1999). Client/Server Survival Guide, 3rd ed.
New York: Wiley. . .

Peng, Z.-R. (1999). An Assessment ~rarhework of the Development Strategies of In-
ternet GIs. Environment and Planning. B: Planning and Design, Vol. 26(1), pp.
117-132.

Plewe, B. (1997). GIs Online: Information~~etrieval, Mapping, and the Internet. Santa
Fe, New Mexico: OnWord Press. . ..

Putz, S. (1994). Interactive hfomatiori $&ices Using World Wide Web Hypertext.
In Proceedings of the First International Conference on the Wbrld- Wide Web, Ge-
neva, Switzerland: CERN (European eganization for Nuclear Research) URL:
http://www94.web.cem.ch/WWW94/PrelimProcs.html, May 1 1. 2000.

Reed, C. (2002). Prior Art and Invent& Related to Web Mapping, Version 1. Un-
published manuscript.

Rowley, J. (1998). Draj? Business Case for the Harmonisation between ISO/TC 211
and Open GIs Consortium, Inc. Resolution 47. ISO/TC 21 1 -NU2.

Shan, Y.-P., and Earle, R. H. (1998). ~ n t e r ~ i i s e Computir~g with Objects: From Client/
Server Environments to the Internet. Reading, Massachusetts: Addison-Wesley.

Tang, Q. (1997). Component Software and Internet GIs. In Proceedings of GIs/
LIS'97, Cincinnati, Ohio, pp. 131-135.

Wright, D. J., O'Dea, E.. Cushing, I. B . , . ~ u n ~ , J. E., and Toomey, D. R. (2003). Why
Web GIs May Not Be Enough: A Cpse'Study with the Virtual Research Vessel,
Marine Geodesy. 26(1 -2).

Xue, Y., Cracknell, A. P., Guo, H. D., 2002. Telegeopsocessiny: The Integration of
Remote Sensing, Geographic Information System (GIs). Global Positioning System
(GPS) and Telecommunication, Int. J. .Remote Sensing, 23(9): 1 85 1-1 893.

FRAMEWORK OF
DISTRIBUTED GEOGRAPHIC
INFORMATION SERVICES

Geographic information systems are evolving to support a new, network-based
architecture. This architecture is multiparticipant, collaborative, and will allow

organizations to openly share and directly use GIS information from many
distributed sources at the same time.

-Jack Dangermond (200 1)

5.1 lNTRODUCTlON

The previous chapter introduced the technology of interactive Web mapping,
which provide only half of truly distributed GIs. Client-side applications such
as Java applets and ActiveX controls and dynamic HTML are designed mainly
for graphic display of maps rather than truly providing GIs operations and
analysis. There is very limited functionality in existing Web mapping pro-
grams, which do not offer much interactivity and flexibility for complicated
GIs modeling and processing.

In addition, the architecture models for static Web mapping and interactive
Web mapping require a CGI or CGI-like middleware between the Web client
and the GIs and application server. The middleware approach adds the over-
head of interactions between the Web client and a GIs server. What if we
have a direct communication between the GIs server and the client? This is
the idea of a distributed GIs.

So what is distributed GIs? Distributed GIs refers to a distributed platform
- of accessing and processing geospatial data using distributed GIService corn-

ponents on the Internet. It relies on mobile client components or downloadable
clients that communicate directly with objects and data on the server across

