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Abstract
This study established spectral matching techniques (SMTs)
to determine land-use and land-cover (LULC) and irrigated
area classes from historical time-series (HTS-LULC) AVHRR
0.1-degree pathfinder satellite sensor data. The approach
for HTS-LULC mapping and characterization was to develop
“target” spectra from: (a) Recent Time Series for which LULC
and irrigated area classes (RTS-LULC) were mapped using
extensive ground-truth data, and (b) ideal locations, which
are known endmembers even during historical time-periods
of interest, as determined based on existing knowledge base
including agricultural census data. The HTS-LULC for the
period of 1982 to 1985 and RTS-LULC for the period of 1996
to 1999 were established using monthly continuous time-
series AVHRR mega-file data of 192 bands (48 months * 4
AVHRR bands per month) each for the HTS and RTS time
periods. The study was conducted in the Krishna river basin
(India), which has a large area (267,088 km2) with numerous
irrigation projects and high population density.

The quantitative and qualitative SMTs were used to
identify and label HTS LULC classes. The identification and
labeling process begins with qualitative spectral matching
technique which visually matches the time-series NDVI
spectra of known RTS-LULC classes and/or ideal endmember
classes with time-series spectra of HTS-LULC classes. This
helps identify classes of similar spectral characteristics in
terms of shape and magnitude over time. The quantitative
SMTs involved: (a) spectral correlation similarity (SCS), as a
shape measure, (b) Euclidian distance (Ed), as distance
measure, (c) spectral similarity value (SSV) as a combination
of shape and distance measure, and (d) modified spectral
angle similarity (MSAS) as a hyperangle measure. The
quantitative and qualitative SMT methods and techniques
lead to assigning HTS-LULC classes that match RTS-LULC
names. In all, an aggregated seven HTS-LULC that were
spectrally similar to the seven RTS-LULC classes and/or ideal
endmember classes were identified and labeled. The SSV was
the best method, followed by SCS.
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The validity of SMTs in identifying HTS LULC classes were
determined based on calculations of irrigated areas. The
1982 to 1985 HTS irrigated area was 2,975,800 hectares
which was 8.5 percent higher than the non-remote sensing
based irrigated area estimate for 1984 (2,743,638 hectares)
by India’s Central Board of Irrigation and Power (CBIP).
The results show that the irrigated areas in Krishna basin
increased by 29.7 percent in 1996 to 1999 (3,860,500
hectares) relative to 1982 to 1985 (2,975,800 hectares),
mostly concentrated in the northwestern portion of the
basin. The results clearly imply the strengths of the spectral
matching techniques in identifying and labeling LULC and
irrigated area classes from the historical satellite sensor data
for which little or no ground truth data is available.

Introduction
Well calibrated and continuous global time-series heritage
and pathfinder satellite imagery such as National Oceanic
and Atmospheric Administration’s (NOAA’s) Advanced Very
High Resolution Radiometer (AVHRR) and Landsat provide a
great opportunity to study land-cover changes over time.
The datasets from Smith et al. (1997) facilitated the genera-
tion of quantitative information on land-use/land-cover
change (LULCC) for any place in the World from July 1981
to September 2001: the period for which well calibrated
continuous time-series AVHRR pathfinder 10 km (0.1-degree)
datasets are available. Such historical information is invalu-
able in investigations such as drought studies (Thenkabail
et al., 2004b), monitoring LULCC, change detection of any
type (e.g., changes due to a major irrigation scheme), and
hydrological or land-cover modeling. These datasets contain
four spectral bands (see Table 1) as a monthly or 10-day
synthesis by the National Aeronautics and Space Adminis-
tration’s (NASA) Goddard Space Flight Center (GSFC): http://
daac.gsfc.nasa.gov/data/dataset/AVHRR/01_Data_Products/
04_FTP_Products/index.html. The monthly composite data
are superior to 10-day composites in terms of cloud free
pixels (Wen and Tateishi, 2001), allowing composition of a
continuous series of monthly images as a single mega-file for
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the entire globe from 1981 to 2001 (http://www.iwmidsp.org).
However, the use of satellite sensor data for historical under-
standing of quantitative change is complicated by the absence
of historical ground truth data and/or historical high resolu-
tion images that coincide with different AVHRR time series.

The value of historical time-series (HTS) AVHRR data (or
for that matter, any similar historical data) will be enhanced
several-fold if a rational, automated technique of identifying
and labeling classes from the historical data is developed.
There are a number of traditional techniques of time-series
data analysis that include Fourier harmonic analysis, fast
Fourier transformation (FFT), wavelet techniques (e.g.,
Jakubauskas et al., 2002; Olsson and Eklundh, 1994),
principal component analysis, change detection analysis
(Jensen, 2000), artificial neural networks, and decision trees
(Defries et al., 1998; Mather, 2003). Each of these methods
have strengths and limitations. The Fourier sinusoidal
components or harmonics depict mono- or bi-modality of the
curve from which inferences such as single crop or double
crop are derived, and generally can be a powerful approach
for irrigated area mapping. But it is generally known that in
highly fragmented and mixed cropping scenario Fourier
analysis provides noisy trends (Jakubauskas et al., 2002;
Olsson and Eklundh, 1994). In general, Fourier provides good
results for regular periodic signals. Wavelet analysis is
suitable for highly non-stationary signals that possess sudden
picks and discontinuities (Jaffard et al., 2001), but is not very
sensitive to changes in magnitude of the signal of closely
linked classes. It is well known that the principal component
analysis (PCA) components that model the largest contribu-
tions to the data set variance may work poorly for pattern
recognition (Tucker et al., 1986). Change detection tech-
niques are widely used, but it is well known that there are
errors associated with each of the two land-cover maps,
and when these are overlaid, the errors are cumulative. As
a result, the error of the land-cover change map is signifi-
cantly worse than either of the land-cover maps (see Jensen,

2000). Artificial neural networks (ANN) are hindered by the
need to specify values of a number of parameters (Mather,
2003). Decision trees are increasingly popular, computation-
ally easier, and considered superior to other time-series
analysis methods such as ANN, change detection, and PCA
(see Mather, 2003; DeFries et al., 1998). However, decision
trees are difficult to apply for historical time-series for which
little or no knowledge exists.

Spectral Matching Techniques (SMT’s) (in a following
section) are a new innovative method of identifying and
labeling information classes in historical time-series (HTS)
data. Hitherto, applied in hyperspectral analysis of minerals,
the SMTs offer powerful qualitative and quantitative tech-
niques and methods. In time-series analysis of imagery,
typically, historical time series (HTS) spectra are “matched”
with the “target” spectra of recent time-series (RTS) and/or
from ideal endmember classes for which class names are
known through existing knowledge base such as census
data, ground truth, and maps of the study area. The quantita-
tive and qualitative spectral “matching” of a class continues
until the spectral time series of a class from HTS time-period
fits with one of the classes of RTS and/or ideal endmember
class. Once this is achieved it becomes possible to decipher
its class identity and hence label HTS classes.

Thereby, the overarching goal was to establish the
qualitative and quantitative spectral matching techniques
(SMTs) to identify and label historical time-series land-
use/land-cover (HTS-LULC) classes based on “target” spectra.
The approaches, methods, and techniques were tested using
monthly AVHRR data for HTS time period (1982 to 1985) and
RTS time period (1996 to 1999). The 1982 to 1985 time
period was considered ideal HTS as it was at the beginning
of swift rise in irrigation projects in the basin. From 1996 to
1999, a period in which almost all major irrigation projects
were completed, the ground water expansion plateaued. The
change in irrigation in particular after 1999 was considered
insignificant based on field knowledge.
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TABLE 1. THE 956-BAND AVHRR MEGA-FILE CHARACTERISTICS FOR KRISHNA BASIN. A CONTINUOUS STREAM OF MONTHLY 0.1-DEGREE

AVHRR DATA FROM 1981 TO 2001 WAS USED IN THE STUDY1,2

Number of Bands 
Band Number3 Wavelength Range Duration4 for 1982 to 2000 Data Final Format Range8

(#) (�m) (years) (#; one per month)5 (percent: for reflectance)6 (percent)

(degree Kelvin: temperature)
(unitless: for NDVI)7

Band 1 (B1) 0.58–0.68 1982–2000 224 reflectance 0–100
(at-ground)9

Band 2 (B2) 0.73–1.1 1982–2000 224 reflectance 0–100
(at-ground)9

Band 4 (B4) 10.3–11.3 1982–2000 224 Brightness temperature 160–340
(top-of-atmosphere)

Band 5 (B5) 11.5–12.5 1982–2000 224 Brightness temperature 160–340
(top-of-atmosphere)

NDVI7 (B2 � B1)/(B2 � B1) 1982–2000 224 unitless �1 to �1

Notes:
1 � Data were acquired from NOAA satellites 7 (13 July, 1981 through 05 February, 1985), 9 (06 February, 1985 through 07 November,
1988), 11 (08 November, 1988 through 14 September, 1994), and 14 (03 January, 1995 to 31 December, 2000). The 0.1-degree (approxi-
mately 10 km) product was generated using global area coverage (GAC) data (4 km � 4 km).
2 � NOAA is a sun synchronous, near polar orbiting satellite at 833 km above earth imaging at at 98.8 degrees, with ascending node local
overpass times of 14.30 (NOAA-7), 14.20 (NOAA-9),13.30 (NOAA-11), and13.30 (NOAA-14), orbiting the Globe every 102 minutes (14.1
orbits daily).
3 � Band 3 (3.55 to 3.93 �m) was not used due to unresolved calibration issues.
4 � Data is actually available for 1981 to 2001. But we have used 19 complete years (1982 to 2000) in this study.
5 � There was data for 224 months in 19 years. September to December 1994 data was not acquired due to failure of the satellite.
6 � The reflectance data is corrected for Rayleigh Scattering and ozone absorption (see James and Kalluri, 1994)
7 � pixels with highest NDVI’s were chosen in monthly time-compositing, nearly providing cloud-free images.
8 � Data from all bands were converted to surface reflectance using time invariant desert sites from Sahara and Arabia.
9 � At ground reflectance, since the data has gone through corrections for atmospheric scattering and absorption.
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Methods
Study Area
The method was tested and validated for the Krishna River
basin in India, which is one of the benchmark river basins
of the International Water Management Institute (IWMI) and
for which substantial field data is available for the recent
and historical time periods. The Krishna River basin
(Figure 1), the third largest river basin in India after the
Ganges, Godavari, encompasses a total area of 26,708,800
hectares, about 8 percent of the geographic area of India.
The Krishna originates in the Western Ghats and flows east
into the Bay of Bengal (Figure 1). The Krishna flows
through three states: Karnataka, Maharastra, and Andhra
Pradesh (see Figure 1). The average annual rainfall for the
basin is about 800 mm, almost all of which falls during the
Monsoon months of June through October. The long-term
mean rainfall of the delta region is about 900 mm, and that
of the Western Ghats is about 2,500 mm, but they occupy
less than 25 percent of the basin area. About 75 percent of
the Krishna basin has a semi-arid climate, with mean
rainfall of about 650 mm. Hence, full or supplementary
irrigation is a key to livelihoods in these areas throughout
the year. With numerous new irrigation projects developed
in the last three decades, the land-use and irrigated areas
have changed considerably. Given the above facts, the
basin is an ideal location to test spectral matching tech-
niques (SMTs).

Characteristics of AVHRR Data Used in this Study
The AVHRR time-series data for the Krishna river basin was
subseted from the calibrated global continuous time-series
mega dataset (see http://www.iwmidsp.org) composed from the
individual files available from NASA GSFC (www.daac.gsfc.gov/
data/dataset/AVHRR). There were four missing months,
September through December 1994 due to a failure of the NOAA
AVHRR system. In total there are 239 months of data for each
band, making a total of 956 bands from Band 1, 2, 4, and 5 for
the entire basin, the characteristics of which are listed in
Table 1. Band 3 was not used due to unresolved calibration
issues (see Smith et al., 1997).

The monthly composites are generated through the
maximum value compositing (MVC) technique of the daily

AVHRR data (Smith et al., 1997). The MVC technique selects
the data on the date with the maximum NDVI of a given
pixel over the month. The procedure involves quality
checks (Goward et al., 1994; Eidenshink and Faundeer,
1994) and normalization for sun-angle (Cihlar et al., 1994)
needed as a result of different orbital paths and acquisition
time of various NOAA satellites. Aerosol has significant
influence on visible and NIR bands, and its effects are
known to remain uncorrected, even after long compositing
periods (e.g., a month) (Vermote et al., 2002). Many factors
lead to variations or shifts in the data, including but not
limited to, sensor degradation, change in sensor design,
satellite orbital characteristics, atmospheric effects, topo-
graphic effects, moisture absorption effects, and sun
illumination. These effects have been addressed through
several stages of calibrations and re-calibrations (e.g., Smith
et al., 1997; Rao, 1993a and 1993b; Kidwell, 1991; Gordon
et al., 1988; Fleig et al., 1983; NGDC, 1993), making AVHRR
a high quality science dataset. For the thermal channels,
first the atmosphere radiances was calculated and con-
verted to brightness temperatures using a Planck function
equivalent lookup table based on the response curve of
each channel (Smith et al., 1997). The data used in this
study, was further calibrated by choosing “perfect” sites in
the Libyan Sahara desert (see Rao, 1993a and 1993b) and
Saudi Arabian desert that are “time-invariant” over time.
The data were then normalized by developing calibration
coefficient and/or calibration factor. These methods take
a long-time mean of these time invariant locations and
correct individual images to long-term mean. A full
discussion is beyond the scope of this paper, but the
20-year mega-file data and calibrations are made available
through http://www.iwmidsp.org.

The original 16-bit (0 to 65536 digital number) scaled-
reflectance data downloaded from NASA GSFC are converted
to four calculated variables, using the conversion coeffi-
cients provided in the accompanying documentation, that
transforms data to reflectance (0 to 100 percent) for band 1
and band 2 and brightness temperature (degrees Kelvin)
for band 4 and 5. The four calculated variables are: (a) at-
ground reflectance, (b) top of atmosphere brightness tempera-
ture, (c) surface temperature, and (d) NDVI. These parameters
were derived using calibration parameters in the following
six equations (see Smith et al., 1997):

Reflectance (percent) = (Band 1 scaled DN in 16-bit 
radiance – 10) * 0.002 (1)

Reflectance (percent) = (Band 1 scaled DN in 16-bit 
radiance – 10) * 0.002 (2)

Normalized difference vegetation = (SNDVI – 128) 
index (NDVI) (unit less) * 0.008 (3)

Band 4 brightness temperature = (Band 4 scaled DN
(degrees Kelvin) in 16-bit + 31990) 

* 0.005 (4)

Band 5 brightness temperature = (Band 5 scaled DN
(degrees Kelvin) in 16-bit + 31990)

* 0.005 (5)

Surface temperature (Ts) is calculated using split window
technique, assuming a constant emissivity of 0.96.

Surface temperature (Ts) = T4 + 3.3 (T4 – T5) (6)

Characteristics of Ground-truth Data Used in this Study
Ground-truth (GT) data was collected for the recent time-
series (RTS) during 13–26 October 2003 for 144 sample sites
covering about 6,500 kilometers of road travel in the
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Figure 1. Location map of Krishna river basin, India.
The basin is spread across three Indian states: Andhra
Pradesh, Karnataka, and Maharastra.
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Krishna River basin (Figure 2). Much of the changes in the
basin occurred during 1980 to 1995 when most irrigation
projects were completed and operationalized. The LULC and
irrigated area changes from RTS (1996 to 1999) and GT data
collection period (2003) was minimal as established
through: (a) survey of India land-use maps for year 2000 for
certain parts of the basin, and (b) knowledge base from
various researchers working in the basin. In addition, ground
truth observations were made extensively, while driving, by
digitizing on hard-copy topographic maps (1:500 000)
obtained from the Survey of India. The Geocover 2000
(Tucker et al., 2004; http://glcf.umias.umd.edu/index.shtml)
products were also used as additional ground-truth informa-
tion in class identification.

Point specific data was collected from 90 m by 90 m
plots and consisted of GPS locations, land-use categories,
land-cover percentages, cropping patterns during different
seasons (through farmer interviews), crop types, and water-
ing method (irrigated, rainfed). Samples were obtained
within large contiguous areas of a particular land-use/land-
cover (LULC). A stratified-systematic sample design was
adopted. The framework was stratified by motorable road
network or foot path access, where possible, made system-
atic by locating sites every 5 or 10 kilometers along the road
network by vehicle or on foot (see Thenkabail et al., 2005
and Thenkabail et al., 2004a for a detailed description on
the ground truth methodological approaches). The real
challenge is to collect data from the 90 m by 90 m sample
location to represent 10 km by 10 km area. We accom-
plished this by first selecting a “representative” location for
each class. The representativeness was established through a
reconnaissance of AVHRR 10 km class through spatial
contiguity of class as determined through higher resolution
Landsat ETM� data and MODIS 500 m time-series data.

Spectral Signature Matching (SSM) to Determine Historical LULC
Spectral signature matching (SSM) techniques are tradition-
ally developed for hyperspectral data analysis of minerals
(e.g., Homayouni and Roux, 2003; Shippert, 2001, Bing
et al., 1998; Farrand and Harsanyi, 1997; Granahan and Sweet,
2001; Thenkabail et al., 2004 c and 2004d). Time-series data,

such as the monthly NDVI data from AVHRR, are similar to
hyperspectral data tens or hundreds of months in time-series
data replacing tens or hundreds of bands in hyperspectral
data. These similarities imply that the spectral matching
techniques (SMTs), applied for hyperspectral image analysis,
also have potential for application in identifying historical
land-use/land-cover (HTS-LULC) classes from historical time-
series satellite imagery. This involves qualitative and
quantitative spectral matching of the HTS-LULC classes with
the target spectra which is either ideal spectra of endmem-
bers and/or recent time-series LULC (RTS-LULC) classes. The
RTS-LULC classes are first identified and labeled using the
recent ground-truth field data and recent high-resolution
Landsat TM imagery: then HTS-LULC classes are identified by
“matching” HTS class spectra to RTS-LULC class spectra
and/or ideal endmember class spectra through SMTs to
identify and label HTS-LULC classes. The quantitative and
qualitative SSM methods are described below.

Quantitative Spectral Matching Techniques (SMTs)
Spectral Correlation Similarity (SCS): Shape Measure
The spectral correlation similarity (SCS), between the time-
series NDVI spectral profile of HTS-LULC classes (NDVIHI) and
the time-series NDVI spectral profile of RTS-LULC classes
(NDVIRI), provides one indication of spectral similarity. The
assumption is that the spectral profile of similar LULC classes
such as irrigated agriculture of historical time-series (HTS)
and irrigated agriculture of the recent time series (RTS), will
have greater correlation coefficients (SCS R2 values) than
unrelated (or dissimilar) classes, such as irrigated agriculture
of HTS and rainfed agriculture or any other class of RTS. The
SCS or R2 values or � (referred to as SCS R2 values or simply
SCS) are computed as follows (SAS, 2004; van der Meer and
Bakker, 1997):

(1)

where, ti � target (a RTS-LULC class or a ideal LULC class)
spectra or NDVI @ time i � 1 to n, �t � mean spectra or NDVI
of target, hi � historical (a HTS-LULC class) spectra or NDVI @
time i � 1 to n, �h � mean spectra or NDVI of historical class,
�t � standard deviation of target class spectra or NDVI, and
�h � standard deviation of historical class spectra or NDVI.

The “SCS or R2 values or �” (SCS R2 values or simply
SCS) values, typically, vary between 0 and 1, and primarily
measure the shape of the spectra over time.

Interpretation of SCS � A shape measure: The higher
the SCS, the greater the similarity in the shape of spectral or
temporal NDVI profile between the HTS-LULC classes and RTS-
LULC classes. An r value of 0 is least similar, 1 most similar
(ideal).

Euclidian Distance Similarity (EDS): distance measure
The Euclidian distance (or Spectral Distance) measures
determine the closeness or separation between a HTS-LULC class
and the RTS-LULC classes in spectral space (Campbell, 1987):

(2)

where t, �, and n are defined in Equation 1. The above
formula is normalized to 0 to 1, by using historical mini-
mum (m) and historical maximum (M) NDVI of the target
class as shown below:

EDSnormal � (Edorig – m)/(M – m). (3)

EDS �    �
n

i�1
(ti � ri)2

SCS �
1

n � 1 � �
n

i�1
(ti � �t)(hi � �h)

st sh �
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Figure 2. Ground-truth (GT) data point locations. The GT
data from 144 locations consisted of land-use, land-
cover, cropping pattern, crop types, and watering
method (e.g., rainfed, irrigated).

A
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EDSnormal (Closeness and/or separability) is between 0 and 1,
and primarily measures the magnitude of NDVI closeness or
separability over time. Ed orig � Euclidian distance at the origin.

Interpretation for EDSnormal � A Distance Measure:
The distance or proximity between spectra or temporal NDVI
of HTS-LULC classes with RTS-LULC classes. Zero is most
separate, 1 most close.

Spectral Similarity Value (SSV): Shape and Distance Measure
The SSV combines the characteristics of SCS and SDS. It
combines measures of shape (correlation) and NDVI differ-
ence (closeness) between HTS-LULC classes and RTS-LULC
and/or ideal endmember spectral classes (Homayouni and
Roux, 2003; Granahan and Sweet, 2001):

(4)

The range of the SSV is between 0 to 1.414.
Interpretation for SSV � A Shape and Distance Measure:

Similarities of: (a) distance, and (b) shape between spectra or
temporal NDVI of HTS-LULC classes with RTS-LULC classes. The
smaller the SSV values, the greater the similarity between the
spectra and vice versa.

Modified Spectral Angle Similarity (MSAS)
The spectral angle between the HTS-LULC NDVI (NDVIH) of a
class at given time to recent RTS-LULC NDVI (NDVIR) of a class
at given time is first established. Then, the hyper-angle
(angle between target spectrum and pixel spectrum) is
defined as an angle between NDVIH versus NDVIR of all classes
at every date. The hyper-angle is defined as (Shippert, 2001;
Homayouni and Roux, 2003; Farrand and Harsanyi, 1997;
Schwarz and Staenz, 2001):

(5)

(6)

The range of MSASnormal is between 0 to 1. The interpreta-
tion for MSASnormal is the hyper-angle between spectra or
temporal NDVI of HLULC classes with RLULC classes. Smaller
the hyper-angle (or smaller the MSASnormal) greater the
similarity between the spectra and vice versa.

Qualitative SSM Approaches
A qualitative SSM approach takes the time-series spectra of
one HTS-LULC and matches it for shape and magnitude with
all RTS-LULC classes and/or ideal spectral classes (often for
simplicity only RTS-LULC is mentioned). The HTS-LULC class
being matched is assigned to one of the RTS-LULC classes
based on: (a) shape, and/or (b) magnitude, and/or (c) both
shape and magnitude. The categorization and labeling
adhere to the following protocol:

1. If the shape and magnitude of the HTS-LULC class match with
one of the RTS-LULC class, then its (HTS-LULC) class ID is
assigned to that RTS-LULC class; and

2. If the HTS-LULC class has only shape or magnitude match
with one of the RTS-LULC class, then its (HTS-LULC) class ID is
only partially established to be the same as the RTS-LULC
class with which it has shape or magnitude matches.

The qualitative measures are used in conjunction with the
quantitative measures. When certain trends are seen in
qualitative measures, they are verified through quantitative
measures. When there is conclusive evidence from qualitative
measures, quantitative measures help strengthen the inference.

MSASnormal �
2a

	
.

a � across �  
�
n

i�1
tipi

�
n

i�1
t2
i      �

n

i�1
p2

i �

SSV �   EDS2 � (1 � r)2

When there is absence of conclusive evidence from qualitative
measures, quantitative measures are solely depended on.

Results and Discussion
First, the results and discussion on RTS-LULC (1996 to 1999)
are presented. The RTS-LULC classes are determined using
normal unsupervised classification backed by bispectral
plots, NDVI plots, detailed ground truth, and census statistics.
This will be followed by results and discussion on HTS-LULC
classes using innovative spectral matching techniques (SMTs).
First, qualitative SMTs will be presented and discussed,
followed by quantitative and spatial. Specific emphasis will
be on irrigated area class for which ground-truth (GT) data is
also richer. Finally, accuracy assessment of the irrigated area
class in the HTS-LULC classes will be established.

The RTS-LULC
The RTS-LULC classes were derived from AVHRR monthly time
series of 1996 to 1999. The original AVHRR continuous time-
series mega-file data for 1981 to 1999 consisted 956 bands.
Of this, the RTS data for 1996 to 1999 consisted of 192 bands
(4 bands * 4 years * 12 months). Initially, statistical algo-
rithm called “ISOCLASS” for unsupervised clustering was
performed on the RTS 192 band dataset using ERDAS Imagine®

8.7. The monthly AVHRR NDVI images for 1996 to 1999 were
used to capture the RTS-LULC characteristics. Classifications
such as these, using multiple years, capture climate variabil-
ity (wettest to driest years) and is a better representation of
actual LULC and irrigated area conditions for a period (e.g.,
late-1990s) than using a single month or a single year.

The mean 1996 to 1999 month-by-month long-term
mean thermal “skin” temperature (Figure 3a) and AVHRR
NDVI (Figure 3b) and are presented for the initial 19 classes
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Figure 3. The NDVI and “skin” temperature profiles for
identifying and labeling RTS (1996 to 1999) LULC classes.
The mean monthly “skin” temperature (b) and NDVI (a)
and profiles of the 19 RTS-LULC classes were used in
distinguishing classes based on their difference over time.

A A

w

(a)

(b)
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of the RTS-LULC. All classes follow a pattern based on
seasonality; a steep rise in NDVI at the beginning June to July
of main cropping season called “Khariff,” high NDVI during
peak-Kariff (August to October), moderate and decreasing
NDVI during beginning of second cropping season called
“Rabi” (November to February), and low NDVI during
summer (March to June) (see Figure 3b). The results high-
light a strong degree of relationships between AVHRR NDVI
and rainfall (see Eklundh, 1998) and their significant
relationships with biophysical quantities (Foody et al.,
1983). The “skin” temperature (Figure 3a) is almost perfectly
opposite to the NDVI (Figure 3b) behavior; when NDVI is high,
“skin” temperature is low and vice versa. All 19 classes
follow a consistent pattern, with classes being separated
from one another based on the magnitude of variation
(Figure 3a and 3b). The availability of thermal images, in
addition to red and NIR, enhances class seperability further,
supporting the results of Kerber and Schutt (1986), Lumbin
and Ehrlich (1995 and 1996), and Maxwell et al. (2002a and
2002b). Thermal skin temperature, Ts, responds to variations
in the energy balance caused by evapotranspiration from the
land surface, which may be affected by both short term
processes such as surface wetting by rainfall, and longer
term, seasonal processes, such as changes in soil moisture,
vegetation cover, and cropping pattern (Wen and Tateishi,
2001; Lambin and Ehrlich, 1995). The ratio between Ts and
NDVI increases the capability of discrimination among
vegetation classes (Goward et al., 1991 and 1994; Huete and
Liu, 1994; Jensen, 2000; Kogan and Zhu, 2001; Lambin and
Ehrlich, 1995). The ratio of Ts/NDVI has been interpreted
biophysically as regional surface resistance to evapotranspi-
ration (Nemani and Running, 1989).

The classes were identified and labeled on the basis of
the ground-truth data, including field observations and
interviews, NDVI and temperature profiles (e.g., Figure 3a
and 3b), brightness-greenness-wetness (BGW) plots (e.g.,
Figure 4a through 4d) (see Thenkabail et al., 2005 for
methods and approaches of using BGW plots), and space-time
spiral-curves (ST-SCs; Thenkabail et al., 2005) (Figure 5).
Two-dimensional feature space (2D-FS) plots are illustrated
for all 19 RTS-LULC classes using Band 1 (red) and Band 2
(NIR) (Figure 4). These 2D-FS BGW plots are illustrated for
selected months of peak winter (or Rabi) crop, peak summer
(May), peak vegetative during monsoon (August), and
critical phases during monsoon (October) (see Figure 4a
through Figure 4d). The classes were significantly closer to
the soil line during the driest periods (Figure 4b) compared
to the monsoonal periods (Figure 4c and 4d). The BGW plots
are also plotted for peak-Khariff (monsoonal season) month
of October (Figure 4d) and peak-Rabi (winter) month of
January (Figure 4a). The classes are significantly closer to
the soil line during summer (Figure 4b) and winter (Figure
4a) relative to monsoonal periods (Figure 4c and 4d) as a
result of higher biomass and vegetation cover during Khariff.
The classes moved around in space and time significantly.
For example, take classes 14, 8, and 2 that were close to
each other in February (Figure 4a). The classes 14 and 2
were significantly different in October (Figure 4d) than the
classes 14 and 8 in August (Figure 4c). Overall, almost all
the classes can be distinguished from other classes in one
season or the other. The brightness, greenness, and wetness
(BGW) zones (Crist and Cicone, 1984) capture unique land-
cover classes and help us separate them into distinct
categories. Tree canopies and hills have deeper shadows
compared with crops. The BGW zones (Figure 4a through 4d)
help us capture this phenomenon very well. Within a class
such as agricultural crops, ST-SCs (Figure 5) separate irri-
gated rice, irrigated mixed crops and rainfed crops. The ST-
SCs (Figure 5) are a powerful 3D (x, y, and time as third

dimension) graphical approach to studying subtle and
not-so-subtle variation in biomass dynamics over time for
each class and are illustrated for the forest, irrigated, and
rainfed classes in Figure 5. These three classes, for example,
occupy unique domains in 3D feature space for dry years
(Figure 5). There are one or more dates in which all three
classes are spectrally well separated (Figure 5). The forests
are in the green-wet zone, irrigated in the green zone, and
rainfed in the bright-green zone. These series of plots,
backed by ground truth data, and census statistics lead to a
final seven aggregated RTS-LULC classes (Figure 6a).

The heterogeneity within the 10 km pixels can cause
difficulty in identifying a particular pixel with a particular
class. Thereby, the final seven RTS-LULC and irrigated area
classes (see Figure 6a) were identified from the original 19
classes based on actual ground truth data, field interviews,
Survey of India maps, spectral BGW plots (e.g., Figure 4),
ST-SCs (e.g., Figure 5), NDVI time-series plots (e.g., Figure 3a),
and “skin” temperature (e.g., Figure 3b) time-series plots.

The HTS-LULC (1982 to 1985) and the Spectral Matching Techniques (SMTs)
The HTS classes could not be directly labeled because of the
complete absence of ground-truth data for 1982 to 1985, so
the spectral matching techniques (SMTs) were adopted to
identify classes.

The initial 21 unsupervised classes (not illustrated) were
narrowed down to seven final HTS-LULC classes (Figure 6b)
based on:

1. Qualitative spectral matching;
2. Quantitative spectral matching; and
3. Spatial location of the class as pseudo-ground information.

Combinations of the above methods (Hill and Donald, 2003;
Wang et al., 2001; Granahan and Sweet, 2001) play a key
role in accurate matching of classes and labeling them. It
needs to be noted that the quantitative, qualitative, and
spatial SMT’s are complementary/supplementary in how they
are used. This means that we can use them interchangeably
to resolve, identify, and label classes. The RTS-, and the HTS-
LULC classes were all labeled to match each other (e.g., class
1 in HTS is the same as class 1 in RTS, or class 5 in HTS is
the same as class 5 in RTS, and so on) based on the methods
and approaches previously discussed. When a class
“matches” in characteristics in one time-period relative to
the other, it was assigned a unique code.

The Qualitative Spectral Signature Matching (SSM)
Techniques for HTS-LULC

The HTS-LULC classes were first identified by a qualitative
spectral matching technique (SMTs) that involved using the
“target” spectra from: (a) RTS-LULC classes, and (b) ideal
endmember class locations. The spectra of each of the
original 21 spectral classes of HTS were matched with the
seven available RTS-LULC and irrigated area class spectra (see,
for example, Figure 7a through 7d). The process of matching
is carried out until a combination of HTS classes constitutes
a “spectral match” in shape and/or magnitude with the RTS
classes (see Figure 7). Ground-truth classes were extensively
used to determine how we match classes. So, classes were
matched not only based on how well they spectrally match,
but that have meaningful grouping based on field knowl-
edge. The shape of the RTS classes matched the HTS classes
well (Figure 7a through 7d), but the magnitudes of the
classes, however, were sharply higher for RTS-LULC, compared
to HTS spectral profiles. The irrigated areas (Figure 7d),
for example, have intensified with technological improve-
ments, (increased cropping intensities, and intensive crop
management practices) all of which resulted in a sharp rise
of biomass levels during the RTS, in comparison to the
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HTS. The spectral matches of HTS with RTS-LULC are also
illustrated for irrigated (supplemental) class 4 (Figure 7c),
pure rainfed class 3 (Figure 7b), and dryland agriculture
class 1 (Figure 7a). Again, the shape itself matches well with
an offset in magnitude (Shippert, 2001; Staenz and Williams,
2001a; Schwarz and Staenz, 2001b).

There are two significant noticeable changes in the HTS
spectra relative to RTS spectra. First, the magnitudes of
spectra (e.g., NDVI) of the RTS classes were significantly
higher than the magnitude of the spectra of the HTS classes
(see, for example, Figure 7c and 7d). Second, the shape of
the NDVI spectra were more “U” shaped for the RTS classes,

compared to the more “V” shaped for the HTS classes
(Figure 7a, 7b, and 7c). The “U” shapes indicate greater
intensity of cropping or vegetation over longer periods. The
“V” shapes are more for single cropping. The magnitude of
the changes is as a result of technological advances (e.g.,
crop management practices, fertilizer, and greater cropping
intensity) and/or physical infrastructure changes (e.g.,
installation of groundwater wells, irrigation infrastructure,
and related greater efficiency and reliability in water
delivery). For example, the biomass and grain yield have
increased consistently over last two decades of the millen-
nium and now has reached plateau. This was established
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Figure 4. The brightness-greenness-wetness (BGW) 2-dimensional feature space (2D-FS) plots for identify-
ing and labeling RTS (1996 to 1999) LULC classes. The BGW 2D-FS plots of AVHRR band 1 versus band 2
reflectivity for the 19 RTS LULC classes are illustrated for average monthly conditions for 1996 to 1999
RTS period for the months of: (a) February (peak winter crop), (b) May (peak summer), (c) August (mid-
monsoonal rainy season), and (d) October (peak monsoonal rainy season).

(a) (b)

(c) (d)
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based on interviews of farmers, local agricultural extension
officers, and researchers working in the area. This is true
even for rainfed agriculture. Further, there has been swift
increase in ground water irrigation, often to supplement
rainfed agriculture. All these factors have increased
biomass levels of all agricultural crops irrigated and non-
irrigated alike.

Quantitative Indices for HTS-LULC Identification and Labeling
The indices previously introduced were used to quantify
class similarity as a quantitative check on the qualitative
matching used to assign historical class names. The qualita-
tive matching was used first, since the quantitative matching
tended to merge classes that had different land-cover based
on ground truth data.

The matrix of spectral correlation similarity (SCS) R2

values for time-series HTS-LULC NDVI versus RTS-LULC NDVI are
shown in Table 2. Five of the seven classes of HTS-LULC had
the highest SCS R2 values for their corresponding RTS-LULC
classes determined by using the qualitative spectral match-
ing approach (Table 2). For example, class 2 of HTS-LULC has
an SCS R2 value of 0.97 with class 2 of RTS-LULC, whereas the
R2 values with all other classes were substantially lower.
The R2 measure accounts for shape of the spectra, and so
would account for differences in the timing of vegetation
phenologic transitions, but not total vegetation cover or
irrigation intensity.

The SSV (Table 3) measures both the shape and the
magnitude of the NDVI spectra. Six of the seven classes of
HTS and the “target” had the lowest SSV values or greatest
spectral similarity (Table 3). The “target” spectra were
obtained from the RTS-LULC and/or ideal locations of the
seven classes. For example, the irrigated area class 5 for

1982 through 85 had the lowest SSV value (or greatest
similarity) of 0.22 with the class 5 (irrigated) spectra of the
ideal target for the class.

The results of Ed were similar to the results obtained
from SCS R2 values and the modified spectral angle similar-
ity (MSAS) (see Homayouni and Roux, 2003) provided similar
results as SSV. Hence, it was not necessary to report these.
Further, the MSAS is more complex to compute, and has a
tendency to provide “infinity.” Given these facts, it is
obvious that computation of SSV would suffice. The supple-
mental irrigated class 4 of HTS was hardest to determine
using RTS data (see, for example, Table 3) as a result of
dramatic changes of conversion of other classes in HTS to
supplemental irrigated class in RTS. Also, in RTS the magni-
tude of NDVI increased as a result of the intensity and
technological advances in crop growth conditions. The final
spectral characteristics of the RTS-LULC and HTS-LULC are
depicted in Figure 8a and 8b. The final spatial distribution
of RTS-LULC and HTS-LULC are shown in Figure 6a and 6b,
respectively. The area under each class and changes in area
of the seven classes are shown in Table 4 and will be
discussed in a section to follow.
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Figure 6. The final seven RTS- and HTS-LULC class maps
of Krishna basin. The spatial distribution of the final
seven classes using the AVHRR 0.1-degree monthly data
was mapped for the: (a) 1996 to 1999 RTS-LULC, and
(b) 1982 to 1985 HTS-LULC.

Figure 5. Space-time spiral-curves (ST SCs) for identifying
and labeling the 19 RTS (1996 to 99) LULC classes. The
reflectivity in band 1 (red) versus band 2 (NIR) plotted
continuously for each month from June 1998 to May
1999 and illustrated for three classes: forests (class 7)
versus irrigated (class 5) versus rainfed agriculture
(class 3). The ST-SCs are in away 3D plots (X,Y, and
time) and show the time (in months) during which two
classes can be differentiated.

(a)

(b)
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TABLE 2. SPECTRAL CORRELATION SIMILARITY (SCS) VALUE. THE SCS VALUES

FOR SEVEN CLASSES DURING 1982 TO 1985 VERSUS 1995 TO 1999. THE

SCS WERE ESTABLISHED BASED ON THE CORRELATION (R2 VALUE) MATRIX

BETWEEN MONTHLY TEMPORAL SPECTRAL NDVI PROFILES OF 1982 TO 1985
VERSUS 1995 TO 1999

Class Class Class Class Class Class Class 
1-9599 2-9599 3-9599 4-9599 5-9599 6-9599 7-9599

Class 0.93 0.73 0.88 0.92 0.87 0.89 0.88
1-8285

Class 0.82 0.97 0.90 0.86 0.88 0.77 0.79
2-8285

Class 0.90 0.89 0.93 0.94 0.94 0.90 0.85
3-8285

Class 0.96 0.87 0.96 0.96 0.94 0.92 0.91
4-8285

Class 0.91 0.85 0.92 0.97 0.98 0.91 0.86
5-8285

Class 0.79 0.72 0.80 0.85 0.88 0.95 0.82
6-8285

Class 0.82 0.74 0.82 0.83 0.83 0.94 0.88
7-8285

Note: SCS values vary between 0 to 1. Greater the SCS, greater the
spectral similarity.

TABLE 3. SPECTRAL SIMILARITY VALUE (SSV). THE SSV VALUES FOR

SEVEN CLASSES DURING 1982 TO 1985 VERSUS IDEAL TARGET SPECTRA

FOR THE SAME PERIOD

Class Class Class Class Class Class Class 
1-target 2-target 3-target 4-target 5-target 6-target 7-target

Class 0.23 0.33 0.19 0.43 0.30 0.39 0.35
1-8285

Class 0.23 0.15 0.17 0.39 0.29 0.48 0.43
2-8285

Class 0.28 0.18 0.17 0.45 0.25 0.44 0.35
3-8285

Class 0.25 0.15 0.16 0.57 0.27 0.48 0.39
4-8285

Class 0.36 0.28 0.24 0.29 0.22 0.33 0.26
5-8285

Class 0.35 0.29 0.29 0.22 0.23 0.20 0.29
6-8285

Class 0.46 0.34 0.34 0.17 0.43 0.15 0.15
7-8285

Note: SSV values vary between 0 to 1.414. Lesser the SSV value
greater the spectral similarity.

Figure 7. Qualitative spectral matching techniques. Illustration of qualitative spectral matching tech-
nique between RTS-LULC classes and HTS-LULC classes for: (a) dryland agriculture, (b) rainfed agriculture,
(c) supplemental irrigated agriculture, and (d) irrigated agriculture.

Spatial Matching in HTS-LULC Identification and Labeling
Care must be taken when interpreting SCS R2 values and the
SSV values as it is very likely, but not necessarily true, that a
HTS class belongs to the same RTS-LULC class with which it
has highest SCS and SSV values. There are situations when
two spectra with matching SCS and SSV values have quite
different vegetation cover and cropping intensities, like
continuous irrigation, forest, and agro-forest. Therefore, a

“blind” assignment of classes, based just on quantitative
highest correlations alone should be avoided. In other
words, a quantitative match must be corroborated by
evidence from field knowledge, interviews, and multiple
checks.

In Table 2, the best SCS values for class 3 (rainfed
agriculture) of HTS-LULC is with class 5 (irrigated agriculture)
or Class 4 (Supplemental and rainfed agriculture) of RTS-LULC,

(a)

(c) (d)

(b)
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and not with class 3 (rainfed agriculture) of RTS (Table 2).
This is because the characteristics of rainfed agriculture in
RTS (1995 to 1999) changed, when compared with HTS (1982 to
1985) (Figure 7). The agricultural classes: dryland (Figure 7a),
rainfed (Figure 7b), and supplemental (Figure 7c) all had
“inverted U shape” NDVI time-series in RTS period when
compared with “inverted V shape” NDVI time-series in HTS
period. The U shape implies greater length of cropping period
compared to V shape. The rainfed agriculture season now
stretches from July of one year to March of next year in RTS,
giving NDVI time-series spectra a “inverted U shape,” whereas
rainfed crop was mainly grown during August to February
during HTS and had a “inverted V shape” (Figure 7b). Field
visits indicated that this is as a result of increased groundwa-
ter irrigation or increased intensity and frequency of rainfed
cropping in a calendar year in RTS compared to HTS. There-
fore, going purely by quantitative SCS and SSV values as in
Table 2 or Table 3 or by qualitative observations as in Figure 7,
without paying attention to spatial location of class could be,
at times, misleading. Thereby, once the qualitative and
quantitative relationships are established, further confirmation
of the class matches were confirmed based on spatial location
of the occurrence of the class. For example, the best SCS
values for class 5 (Irrigated agriculture) of HTS is with class 5
(irrigated agriculture) of RTS (Table 2). Class 5 of RTS has a
similar shape to class 5 of HTS, except that there was greater
vigor and hence, higher NDVIs during RTS (Figure 7d). So both
were labeled class 5 based, not only on quantitative (Table 2)
and qualitative (Figure 7b) observations of time series NDVI

spectra, but were verified further by spatial location of their
occurrences (Figures 6a and 6b). There are times when, for
example, continuous irrigation (e.g., sugarcane) may show up
similar to forests in qualitative and quantitative HTS and RTS
spectra, but the spatial location of forests are distinct com-
pared to sugarcane agricultural areas.

Accuracy of Irrigated Areas from Historical Data
The accuracies of mapping irrigated areas were assessed
using data from field based maps made available by basin
administration (CBIP, 1984), results from two other studies
(one using National irrigation statistics and another remote
sensing approaches), and by adopting sub-pixel (see Biggs
et al., 2006) and full-pixel area calculations. The sub-pixel
irrigated areas (SPIAs) of the Krishna basin determined in
this study for 1996 to 1999 are compared with two other
SPIA estimates: (a) FAO/Frankfurt University irrigated area
(Siebert et al., 2002), and (b) IWMI Global Irrigated Area Map
(Thenkabail et al., 2005b). The Frankfurt University map
used mid-1990s statistics from the National statistics on
irrigated areas and created a global map of irrigated areas
providing the irrigated percent of the area/pixel. The IWMI
global irrigated area map used 0.1-degree AVHRR data of 1997
to 1999 (same as this study) along with other datasets, such
as GTOP30, rainfall, SPOT vegetation 1 km, and forest cover
data to determine spatial location of irrigated areas, and then
used sub-pixel decomposition (SPD) technique to obtain
irrigated areas. These calculations showed the area irrigated
in the Krishna basin was 3,589,500 hectares (93 percent of
our estimate) from the Frankfurt map, and 3,415,600 hectares
(88.5 percent of our estimate) from the IWMI global map.
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Figure 8. The final seven RTS- and HTS-LULC class
characteristics. The final seven class characteristics as
depicted using NDVI plots for the: (a) 1996 to 1999 RTS-
LULC, and (b) 1982 to 1985 HTS-LULC.

TABLE 4. HISTORICAL LAND-USE/LAND-COVER CHANGE (LULCC) IN

KRISHNA BASIN. THE LULCC IN KRISHNA BASIN STUDIES USING

AVHRR 0.1-DEGREE DATA FOR TIME PERIODS: (a) 1981 TO 2001 CONTINU-
OUS MONTHLY STREAMS, (b) HISTORICAL 1982 TO 1985 MONTHLY, AND

(c) RECENT 1995 TO 1999 MONTHLY

For the Time Periods Historical Time Series (82–85),
Recent Time Series (96–99)

Class 82–85 96–99 Difference 96–99
Class# Description % % to 82–85 %

Class1 Agriculture 18.07 14.24 �3.84
(dryland)

Class2 Rangelands 16.03 10.65 �5.39
Class3 Agriculture 10.36 15.14 4.77

(rainfed)
Class4 Agriculture 18.97 19.87 0.90

(Supplemental)
Class5 Agriculture 22.85 30.03 7.18

(Irrigated)
Class6 Forests 1.96 2.73 0.78

(degraded) with 
agriculture mosaic

Class7 Forests, plantations 11.75 7.34 �4.41

Note:
A � total area of the basin � 267,088 sq. kms.
1 � when compared with 1982 to 1985, in 1996 to 1999 significant
portion of the class 1 (dryland) and class 2 (rangelands) are
converted into class 3 (rainfed) and class 4 (supplemental);
2 � when compared with 1982 to 1985, in 1996 to 1999 significant
portion of the class 4 (supplemental) is converted into class 5
(irrigated).
3 � when compared with 1982 to 1985, in 1996 to 1999 significant
portion of the class 7 (Forests, plantations) is converted into class 6
(Forests degraded with agriculture).

(a)

(b)
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For the HTS time period (1982 to 1985), the irrigated areas
mapped in this study were compared with the irrigated areas
of 1984 provided by the Central Board of Irrigation and Power
of India (CBIP, 1984). The CBIP produced a comprehensive
map of irrigated areas for all India from which the Krishna
basin statistics were extracted. The total irrigated during 1982
to 1985 as determined in this study for the Krishna basin was
2,975,800 hectares, which is 108.47 percent of the CBIP
(2,743,368 hectares) estimate. These results clearly proved the
utility of AVHRR historical time series in determining irrigated
areas (and by corollary, other LULC classes) from the past,
adding great value to time-series data.

Conclusions
This paper proposed and demonstrated the use of spectral
matching techniques (SMTs) in determining historical LULC
and irrigated areas (HTS-LULC) classes using the historical
time series 0.1-degree AVHRR data for which little or no
ground truth data is available.

Two quantitative spectral matching techniques were
found most useful: First, spectral similarity value (SSV) which
measures the shape as well as the magnitude similarities of
the time series spectra. This was followed by spectral correla-
tion similarity (SCS) which measures only the shape of the
time series spectra. The other methods like Euclidian distance
and modified spectral angle similarity were more complex,
provided uncertain results, and did not at any time provide
better results than SSV and SCS. Qualitative methods are used
in conjunction with quantitative methods to strengthen the
inferences drawn from each other. Quantitative methods are
primary, qualitative measures supportive. The implementation
protocols of using these techniques were well established and
described in the paper. Currently, there is proliferation of
time-series satellite sensor data from sensors such as MODIS
Terra and Aqua and in the future advanced sensor systems
such as National Polar Operational Environmental Satellite
System (NOPESS). The SMTs are ideal in analyzing time-series
satellite sensor data, especially adding value to historical
images. A major application of SMTs will be to “match” class
spectra with ideal spectra for myriad applications such as
crop type identification, plant species identification, and
mineral exploration. The SMT methods can be further
strengthened by additional research involving these subject
areas by using rich ground based knowledge base.
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