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 This study explored the connection between remotely sensed imagery and ground-

based housing and welfare survey data in slum neighborhoods in Accra, Ghana.  Specific 

household-level variables reflective of housing quality and demographics from the 2009-

2010 Housing and Welfare Study (HAWS) of Accra and the 2003 UN-Habitat Accra Slum 

Survey (AccraSS) were regressed against measures extracted from high spatial resolution 

Quickbird satellite imagery captured in 2002 and again in 2010.  Samples from the two 

surveys for 37 census enumeration areas (EAs) within the Accra Metropolitan Area (AMA) 

were analyzed.  An exhaustive regression analysis was run to measure the covariation 

between individual survey data variables and metrics derived from the imagery.  A spatial 

regimes approach explored spatially autocorrelated data in the discontinuous data set, and 

these results were compared with a geographically weighted regression approach. The goal 

was to establish “proxy” variables from satellite remote sensing data that are indicative of 

household health and welfare characteristics over time by combining spatially homogenous 

predictors in multivariate regression models.  By generating proxies of the built environment, 

we may be able to infer or extrapolate socioeconomic and health statuses for each respective 

EA and the surrounding neighborhoods at other dates (e.g., between surveys and censuses). 

Specifically, I test the hypotheses that (1) socioeconomic and demographic characteristics of 

slum areas can be inferred from spatial variations in vegetation and texture as derived from 

satellite imagery; and (2) dynamics of socioeconomic and demographic characteristics can be 

quantified from changes in the image metrics. Since one in six residents of the world is 

estimated by the UN to be living in a slum, it is important to understand how these 

neighborhoods might transform over time as the population of a major city in a developing 

nation increases at a high rate.   
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CHAPTER 1 

 

INTRODUCTION 

 

 Ghana is currently undergoing a massive rural-to-urban transition, and its capital city 

of Accra has been a major receiving area for migrants from other parts of the country.  

Census data over the past 30 years show that the Greater Accra region has experienced high 

population growth rates, mainly due to a bourgeoning youth population in rural areas that 

exceeds the ability of those areas to create jobs.  According to the latest provisional data from 

the Ghanaian 2010 census, the Greater Accra Region now has a population of 4.4 million, 

accounting for 18 percent of Ghana’s total population.  The Accra Metropolitan Area (AMA) 

is estimated in 2009 to have approximately 2.3 million of these people residing within its 

boundaries, with 58% of the population living in neighborhoods classified as slums (UN 

Habitat 2009).  UN-Habitat defines slums based on their limited access to safe water, 

sanitation and sewage infrastructure, the poorer structural quality of housing, higher number 

of residents per housing unit, and more limited ownership  for housing tenure (United 

Nations Human Settlements Programme 2003).  Rural areas surrounding the capital city of 

Accra, along with the city’s metropolitan center, have also experienced very rapid 

urbanization since the 1980s.  These areas experiencing rapid growth in population consist of 

mostly informal neighborhoods with a lack of urban planning or sufficient infrastructure 

(Moller-Jensen and Knudsen 2008).  The people residing within these informal areas 

generally belong to lower socio-economic classes. Due to the lack of access to a clean water 

supply (Stoler et al.2011), poor sewage systems, and crowded housing, among many other 

factors, they are at a greater health risk and susceptible to higher levels of disease contraction 

and mortality (Weeks et al. 2011).   

 The urban environment serves as a location for the accumulation and integration of 

social, economic and cultural forces over time (Moudon 1997). People living in an urban 

setting act as agents of change, creating a dynamic interrelationship between the population 

and environment.  Urban ecosystems are dramatic manifestations of human’s impact on the 

environment (Ridd 1995), and it is important to evaluate and understand the urban 
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environment and its relationship to social qualities of life.  Like a local ecosystem, the 

functions of the population of a neighborhood have a reciprocal effect on the natural and 

built features.  The physical properties of a neighborhood’s built environment are reflective 

of the local social and spatial contexts that are influenced by the individual characteristics 

and behaviors of its respective and surrounding populations (Entwisle 2007).  These features 

of the built environment, including a range of built infrastructure, vegetation, agriculture, and 

other land cover and land use types, can be remotely sensed and proxy variables derived from 

remotely sensed images may be indicative of the urban lifestyle (Weeks 2003).  In order to 

pragmatically examine urban morphology, however, not only should the physical 

components of a city be explored, but the temporal aspect should also be accounted for.  

Understanding the change over time of a place along an urban-to-rural gradient allows for an 

understanding of processes of urban change that both are affected by and have an effect on 

social processes and human behavior.  

The goal of this study was to examine the degree of co-variability between household 

level survey variables and metrics derived from high spatial resolution satellite imagery 

through multivariate regression.  The main objective is to derive proxy variables of housing 

and welfare attributes from satellite, census, and health survey data for Accra, Ghana.  The 

existing literature has demonstrated that there can be significant correlations between land 

cover metrics classified from high resolution imagery and health and wealth indicators 

derived from census or survey data.  This study sought to explore how different texture 

measures, spectral band indices, and land cover metrics could be exploited to provide a 

quintessential component in classifying the variation in demographics and socioeconomic 

status within a slum neighborhood.  It is important to find which image metrics best identify 

differences in health and wealth indices.   

A secondary objective of this study is to evaluate the robustness of the regression 

models over time, comparing the correlations between the changes in imagery and household 

variables from 2002/2003 to 2009/2010.  Understanding the significance and degree of co-

variability between land cover change and quality of life is an integral step in modeling the 

urban gradient of developing cities in Sub-Saharan Africa.  The specific research questions 

that stemmed from the objectives were as follows: 
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1. How well can socioeconomic and demographic characteristics within slum areas be 

quantified through variations in vegetation and textural indices derived from high 

spatial resolution satellite imagery? 

 

2. How well can changes in socioeconomic and demographic characteristics over time 

be characterized through changes in metrics derived from high spatial resolution 

satellite image data? 

 

3.  Are statistical correlations computed from both global and localized linear 

regression models sufficiently high to enable their use as proxies for slum conditions? 
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CHAPTER 2 

BACKGROUND 

 

2.1   Applications of Remotely Sensed Imagery 

The benefits of the application of remotely sensed imagery to complement research in 

the public health sector have been widely examined (Kelly et al. 2011) and such imagery is 

being integrated into many studies due to its ability to provide measures of factors within the 

human environment that affect the health of a population.  For example, remote sensing 

products based on the normalized difference vegetation index (NDVI) and object-based 

image analysis (OBIA) were demonstrated in Kelly et al. (2011) to assess locations, 

quantities and extents of vegetation, agriculture, water resources, infrastructure, and other 

land use, along with the temporal scales of change across these components of the human 

landscape.  Image texture has also been demonstrated to be useful in the processing of high-

resolution imagery.  Image texture can be defined as the spatial arrangement of the gray 

levels of pixels in a specific window (Herold, Liu & Clarke 2003; Bharati, Liu & MacGregor 

2004), or more specifically “a spatial relationship between intensity values of neighboring 

pixels, repeated over an area larger than the size of the relation” (Raghu et. al. 1995).  

Statistical measures are most commonly used to characterize the spatial variability of pixel 

gray levels within an image (Wang & Liu 1999).  Specifically, second-order statistics such as 

measures derived from Gray Level Co-Occurrence Matrices (GLCMs) have assisted in 

differentiating gaps between land cover types, densely-settled urban areas, and vegetation 

(Jensen 1996; Herold, Liu & Clarke 2003; Kelly et al. 2011).  Whereas first-order statistics 

are based upon simple statistical measures of gray level variability without being related to a 

pixel’s context, second-order statistics describe the relationship of a pixel to its neighbors 

within a defined region (Raghu et al 1995).  Local properties or statistics that repeat over the 

defined region are referred to as texture elements (Arivazhagan & Ganesan 2003).  Satellite 

imagery has been used in Accra to identify areas of health risk from low elevations prone to 

flooding (Rain et al. 2011) and in Kenya and elsewhere in Sub-Saharan Africa to create 
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distance thresholds for areas at risk of the vector born disease of malaria (Hay et al. 2001; 

Tatem & Hay 2004) (Stoler, Weeks, Getis, and Hill 2009).   

2.2   The VIS Model & Spectral Classifications 

 When incorporating imagery into a study, it may be useful to classify land use in 

order to identify how land is being used by its inhabitants.  Ridd (1995) explored the 

application of a V-I-S model for the analysis and characterization of land cover and land use 

within urban ecosystems in a study in Salt Lake City, UT. Combinations of vegetation (V), 

impervious surface (I) and bare soil (S) are considered to be the fundamental components of 

the urban environment.  The V-I-S model was proposed in order to build a conceptual 

framework for inter-urban ecosystem comparison both spatially and temporally, and has been 

expanded upon since (Phinn et al. 2002; Rashed et al. 2003; Rashed et al. 2005).  V-I-S 

analysis classifies each pixel within an image as either vegetation, impervious surface, or 

bare soil through either a hard or soft classification method, depending on the heterogeneity 

and spatial resolution of an image.  Hard classification logic produces a map that consists of 

discrete categories, whereas fuzzy set (soft) classification logic considers image 

heterogeneity as a reality, producing a thematic output in which each pixel contains 

membership probabilities for m number of categories (Jensen 2005).  Pixels composed of a 

homogeneous land cover type are considered “pure” pixels and can be identified through 

hard classification methods based upon the selection of spectral endmembers (pixels with 

uniform land cover).  Pixels that are not comprised of a homogenous land cover type can be 

specified as either V, I, or S using a fuzzy classifier.  Pixels are then aggregated into spatial 

eco-units from which land use in derived.  The detection and monitoring of urban 

morphology can also be monitored through V-I-S modeling, by means of which issues of 

land use and land cover change are being explored for the city of Accra, Ghana (Stow et al. 

2007; Stow et al. forthcoming).   

A major criticism of the V-I-S model has been the issue of classifying mixed pixels in 

the urban scene, thought to be mostly driven by improper combinations of spatial and 

spectral resolution.  Pixels may contain high proportions of all three endmembers, and are 

therefore considered mixed elements (Rashed et al. 2003).  If an urban scene is treated as a 

continuous model, where these mixed pixels are treated as the sum of the spectral 
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interactions between land cover types within a single pixel instead of discrete elements, 

spectral mixture analysis (SMA) can estimate the component parts of mixed pixels by 

predicting the proportion of a pixel that belongs to a particular class or feature based on the 

discrete spectral characteristics of its endmembers.   SMA is a type of fuzzy classification 

and is considered a “soft” classification method (Rashed et al. 2001; Weeks 2003). Rashed et 

al. (2003) applied SMA to an urban scene of Los Angeles County and provided an improved 

measure of the elements of land cover and land use that adequately characterized the urban 

environment.  Also, the value of using spectral mixture analysis to monitor temporal 

compositions in urban land cover change was demonstrated in Cairo (Rashed et al. 2005).  

By using the components of V-I-S plus shade (to capture pixels in the shade of tall buildings) 

at two different dates, multiple endmember fraction images were subtracted from one 

another, revealing the direction (increase or decrease), magnitude, and categories of change 

in land cover, demonstrating in Greater Cairo V-I-S changes cascading out from the urban 

center to the peri-urban fringe regions of the city.   

2.3   Connecting Land Cover & Socioeconomic Data 

Weeks et al. (2007) classified high spatial resolution Quickbird satellite multispectral 

imagery using the V-I-S model to characterize land use in neighborhoods within the Accra 

Metropolitan Area (AMA).  By quantifying the proportional abundance of each of land cover 

surface material, different land use categories were distinguished and then were statistically 

correlated to a Census-derived slum index for neighborhoods.  Factors used to create the 

index are based on the operational definition provided by UN Habitat.  Neighborhoods 

categorized as ”slums” were hypothesized to contain a combination of impervious surfaces 

and bare soil, both indicative of residential areas in sub-Saharan African developing cities, 

but relatively low levels of vegetative cover relative to other residential areas.  GLCM 

texture measures were also included in the analysis of the imagery, where slum areas with 

very dense settlements and little variability in building materials between residences could be 

further distinguished.   Slums were shown to be associated with less vegetation and less 

variability in land cover, supported by an value showing that 38% of the variability from 

one neighborhood to another in the slum index was explained by the proportional abundance 

of vegetation.  The proportional abundance of bare soil also accounted for a great deal of 
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variability, where neighborhoods composed of lesser amounts of bare soil tended to be those 

with higher proportions of crowded housing structures.   

 A recent study explored whether or not variations in the urban landscape of Accra 

depicted by image classification of satellite image data relate to variability in health and 

wealth indicators (Engstrom et al. 2011).  The authors used a combination of Landsat and 

high resolution imagery to extract measures of vegetation and impervious surface from the 

V-I-S model using decision trees.  Inputs to the decision trees included original bands, band 

ratios, vegetation indices, and grey level co-occurrence (GLCM) texture measures.  The 

study was performed on two scales of analysis; first, at the census tract enumeration area 

(EA) level, and second, at the neighborhood level, where EAs were aggregated based on 

local vernacular knowledge of where neighborhood boundaries occurred.  Regression results 

yielded moderate relationships between the percent built-up area per neighborhood with both 

female education levels and population density, with  values of 0.39 and 0.58, 

respectively.  As the percentage of built-up area within an agglomerated neighborhood 

increased, the proportion of women with at least a secondary education decreased.  The 

inverse relationship between these two variables was suggested to be a response to the 

implication of having a dual income household allowing a family to acquire a single-family 

dwelling and attain a higher socio-economic status.  Conversely, a positive relationship was 

discovered between population density and built-up area proportions by neighborhoods, as 

one would normally assume an increase in urban building density to be a response to an 

increasing population.  Percent vegetation cover was also negatively correlated with the use 

of charcoal as a cooking fuel (  = 0.65).  This can be explained by the fact that charcoal is 

the cheapest source of fuel and is used mostly by those people with a lower socioeconomic 

status (Engstrom et al. 2011).   

 Proportions of vegetation per unit area have also proven to be useful in the 

application of classifying land use and in delineating neighborhood boundaries through the 

use of object based approaches in Accra, Ghana (Stow et al. 2007; Stow, Lippitt & Weeks, 

2010).  In analyzing the changes between high spatial resolution imagery from 2002 and 

2010, Stow et al. (forthcoming) found strong correlations between housing quality and socio-

economic variables.  Proportions of vegetation were derived using a simple threshold-based 

classification of normalized difference vegetation index (NDVI) values in order to examine 
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the statistical relationships between vegetation cover and a census-derived housing quality 

index (HQI) at the neighborhood level.  Ordinary least squares regression found a very 

significant degree of spatial covariation between the HQI and vegetation abundance, with an 

 = 0.73 and 0.76 for 2002 and 2010, respectively.  Also, high socio-economic status 

neighborhoods tended to have the highest proportions of landscaped vegetation, while low 

socio-economic areas and “slums” exhibited the lowest amounts of vegetative cover.  In 

addition, low socio-economic neighborhoods showed the greatest relative decrease in 

abundance during the eight-year period, analogous to the increase in building density for 

these neighborhoods.  To complement the fluctuations of vegetation proportions, changes in 

building density were shown by Tsai et al. (2011) to be correlated to socio-economic status in 

Accra, but to a lesser extent.  A statistically significant inverse relationship between new 

building density and housing quality index was determined at the neighborhood level, 

yielding an  = 0.31, where the delineations of new buildings in the Accra Metropolitan 

Area (AMA) tended to be located in lower socio-economic neighborhoods.   

 Herold, Liu & Clarke (2003) applied spatial metric techniques and image texture 

calculations in an urban environment (Goleta and Santa Barbara, California) to explore the 

link between structures, land cover heterogeneity, and dynamic changes in urban land uses.  

Evaluating the quantitative descriptors of spatial urban organization allowed for the 

discovery of relationships between the physical and spectral properties of objects and the 

socio-economic, demographic, and ecological characteristics of individual based land cover 

objects.  Again, vegetation metrics had the highest contribution for best average separability 

between land cover objects, and therefore was what a majority of the classification was based 

upon.  

 Differences between formal and informal neighborhoods in cites of developing 

countries were exploited with a grey level co-occurrence matrix, various texture measures 

and spectral band ratios by Grasser et al. (forthcoming), which provided multiple 

explorations into methods of neighborhood classification and characterization.  Informal 

neighborhoods are defined as unplanned and unauthorized housing settlements located in 

hazardous areas of urban agglomerations with inadequate infrastructure and low availability 

of services, and distinctly contrast with formal settlements and structures in high resolution 

imagery.  Lacunarity, a texture metric that represents the spatial distribution of gap sizes 
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between pixels of similar brightness values, was also an integral element in characterizing 

neighborhoods where building density is generally higher (Grasser et al. forthcoming).  

Lacunarity measures the deviation of a spatial structure in an image from translational 

symmetry, where objects that have high lacunarity are heterogeneous to the surrounding 

pixels and therefore are said to have a higher “gappiness” of geometric structure (Myint & 

Lam 2005).  Lacunarity classification metrics have been demonstrated to enhance the 

accuracy of texture measurements beyond the capability of GLCMs (Dong 2000) and also 

can assist in yielding more accurate textural classifications of land cover and land use in an 

urban region using very high spatial resolution imagery (Myint, Mesev & Lam 2006).   

 The identification and distribution of linear features in urban environments through a 

textural analysis can also contribute to a more accurate image classification (Graesser et al. 

forthcoming, Unsalan & Boyer 2004).  Thresholding the responses of various convolution 

filters can extract the characteristics of linear features that are a unique characteristic of 

anthropogenic structures and have been shown to indicate structural differences between 

neighborhoods of different socioeconomic status (Graesser et al. forthcoming).   
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CHAPTER 3 

DATA & METHODS 

 

3.1   Study Site & Survey Data 

The research draws upon data collected in the 2003 UN-Habitat Accra Slum Survey 

(Accra SS), a supplement to the 2003 Ghana Demographic and Health Survey (DHS), which 

interviewed women in 37 randomly selected enumeration areas (EAs) that met specific 

criteria that categorized them as slum neighborhoods.  The UN-Habitat operationally defines 

slums as neighborhoods that include some or all following characteristics:  (1) inadequate 

access to clean, potable water, (2) inadequate access to improved sanitation and sewage 

infrastructure, (3) poor structural durability of housing, (4) overcrowding within housing 

structures, (5) insecure housing tenure (United Nations Human Settlements Programme 

2003).  EA boundaries were designed and delineated to encompass approximately 1,000 

persons and are the Ghana Statistical Survey’s (GSS) equivalent to a US Census Block 

Group.  EAs are generally too small in area and population to be recognized as 

neighborhoods, but GSS has aggregated them to form larger administratively defined units 

known as localities, containing approximately 40 EAs each.  The survey consisted of 

questions regarding the availability of basic household infrastructure, such as sewerage and 

water facilities, the presence of household possessions that might be reflective of a 

household’s socioeconomic status, various demographic characteristics of the residents 

currently residing in the household, and also contained questions pertaining to a variety of 

health measures for both women and children in the household.   

The second dataset consists of primary data collected in 2009-2010 as part of the 

Housing and Welfare Study (HAWS) of Accra.  The HAWS survey is a representative 

household survey conducted by the Harvard School of Public Health and University of 

Ghana with assistance from San Diego State University. The sampling frame for the HAWS 

was designed to replicate the 2003 UN-Habitat study slum selections, consisting of 

household surveys collected within the same 37 EAs to form a comparable dataset.  The  
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Figure 1.  The enumeration area (EA) boundaries for the Accra Metropolitan Area, 

overlaid on a QuickBird 2010 Panchromatic image. EAs selected for the analysis are 

highlighted in bright green. 

HAWS collected similar data to the Accra SS, and was intended as a follow-up data set to 

assess changes in the selected EAs time.   

There are many housing and welfare variables within the Accra SS and HAWS that 

can represent differing levels of socioeconomic status of a household.  The variables that this 

study focused upon (described below and listed in Table 1) were selected based on not only 

their consistency between both surveys, but more importantly, their characteristic ability to 

have a predictable and intuitive relationship with a household’s health and welfare of living.  

The purpose of studying housing and welfare quality in Accra, Ghana is to link the 

environmental components of a neighborhood to their social environment, providing a better 

understanding of a population’s health.  Accordingly, the selected components of the two 

surveys were housing characteristics that were reflective of a household’s health and well-

being.  These variables served as the dependent variables used in the regression models.  A 
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set of dummy variables was created for all nominal/categorical scale variables in order to 

identify the presence or absence of a specific household characteristic.  The proportions of 

these characteristics were computed for each EA and were assigned as representative EA 

values.   

 

3.2   Survey-Derived Variables 

The physical components of households selected for regression analyses against 

image-derived variables included the source of drinking water, type of toilet facility, cooking 

fuels used, access to electricity, and methods of waste disposal.  These were specifically 

chosen to represent household infrastructure.  The access to and adequacy of these 

characteristics are assumed to be basic household services – the presence of which would 

significantly improve the housing quality, health, and welfare of household residents.   

From more demographic and cultural standpoints, housing tenure, migration, and 

ethnic and religious composition variables were selected from data collected in Accra from 

the 2000 Census of Ghana due to the unavailability of these data in the Accra SS and HAWS 

surveys.  These are considered household demographic variables, and contribute where 

physical characteristics of a household might fall short in explaining differences in housing 

quality and health between slum neighborhoods.  Ethnic residential patterns have been used 

as predictors of intra-urban health in Accra to show that cultural beliefs and social structures 

of specific ethnic groups have an effect on the levels of child mortality within neighborhoods 

(Weeks 2006).  Therefore, the assumption was that ethnicity will also have an effect on the 

composition of the physical environment that will be evident from the imagery.  The 

religious composition of an area has also been shown to affect the clustering or segregation 

of cultural groups and tends to be somewhat linked with ethnicity, providing potential for 

greater spatial heterogeneity.  Housing tenure was used to represent the stability of a 

household; if a household has a stable ownership or lease, then it is less likely that there will 

be much change over time from outside sources such as other tenants, owners, or community 

or government agencies.  However, the scarcity of housing and jobs in Accra motivates 

incoming migrants to temporarily live in the home of a relative, with whom they will live 

until they can establish themselves (Weeks et al., forthcoming).  This implies that the head of 
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the household may not change, yet the composition of the household itself may  and must be 

controlled for with the migration variable.  The combination and interaction of social forces 

and the formation of social relationships in specific places is theorized to have the ability to 

produce unique effects upon a region of interest (Massey 1994) and were considered as vital 

components of the analysis.   

Various indices derived from the Accra SS, 2000 Census and HAWS were also 

incorporated.  A possessions index, based upon the household ownership of various items 

considered luxuries in slum areas, such as a refrigerator, television, or automobile, 

complemented household characteristics.  A slum index created by a prior study in Accra 

(Weeks 2007) was rescaled to compare the variability of “slumness” between the 37 selected 

slum-areas.  A housing quality index (HQI) created by Weeks et al. (2012) and utilized by 

Stow et al. (forthcoming) was utilized in addition to the slum index.  The HQI was derived 

though a principal components analysis of demographic data from the 2000 census of Accra 

using dummy variables for characteristics of housing, infrastructure, and measures of 

household occupant density and is hypothesized to provide comparable results to the 

household utilities and configuration regression results.   

Since it is important to link these household variables to the representative health of 

the people residing within the selected slum neighborhoods, a body mass index (BMI) was 

calculated from the height and weight measurements in the respective surveys.  Since we are 

interested in the portion of the population at risk to poor health, the proportion of the sample 

population that are underweight (BMI < 18.5) and the proportion of people over weight (BMI 

= 25+) were computed.  Although the BMI is criticized for not taking into account other 

factors influencing height and weight, such as body muscle, the index furnishes a good 

indication of whether or not variation in more refined indexes may be explained by image 

metrics.   

3.3   Imagery-Derived Variables 

 

High spatial resolution QuickBird satellite images covering Accra, Ghana were 

captured in April, 2002, and January, 2010.  Panchromatic and multispectral image data in 

blue, green, and red and near infrared spectral bands were collected for both dates.  The 
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spatial resolutions of the images are 0.6 and 2.4 m, respectively, and cover a 121  

portion of the Accra Metropolitan Area.  The scenes cover approximately 80% of the AMA 

region, along with 83% of the region’s population.  Both images have been georeferenced 

independently to the Universal Transverse Mercator map projection by a third-party 

company (i-cubed) at Digital Globe’s (QuickBird image vendor) standard processing level 

(CE90 = 23 m; RMSE = 14 m). Ocean and inland waters were masked prior to image 

analyses. An empirical line normalization approach was used to radiometrically normalize 

the two dates of imagery (Yuan and Elvidge, 1996).   

The regression analyses were conducted at the EA level due to the spatial constraints 

of the data collected in the survey.  Since the size of an EA is only constrained by the number 

of residents within its boundaries and the AMA is known to contain neighborhoods with an 

extreme range of population density, the size of an EA may vary greatly.  Therefore data 

based on EA units may be vulnerable to the ecological fallacy phenomenon known as the 

Modifiable Area Unit Problem (MAUP) (Openshaw 1984).  To somewhat counter the effect 

the MAUP might have on the dataset, areas that contain large areas of non-built land cover 

such as bare soil patches and water were masked out during image metric computation.  

There was enough uninhabited area within EAs along the coast, lagoon shores, rivers, and 

canals to where image metrics based on image brightness would be skewed from pixels that 

do not correspond or relate to any data collected in the surveys.  A manually digitized mask 

was created that modified the boundaries of these EAs to exclude these excess non-built 

areas.   

Spectral and texture measures were calculated at the pixel level for each image using 

ENVI, ERDAS Imagine, and ArcGIS image processing and analysis software packages.  

These measures were computed for both the 2002 and 2010 scenes.  All areas outside the 37 

EAs for both images were masked out in order to reduce computational intensity.  Image-

derived measures for EAs were calculated and extracted using the zonal statistics of pixel 

values within each EA.  The mean and standard deviation of each image metric was 

computed for each specified zone, providing a representative average value along with a 

measure of the variance of the image metrics within each EA.   

The panchromatic band of the QuickBird imagery was used to generate the second-

order texture statistics from the gray level co-occurrence matrix (GLCM).  A rotation-
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invariant gray level co-occurrence matrix (GLCM) similar to that used by Graesser et al. 

(forthcoming) and Herold, Liu & Clarke (2003) was used in this analysis.  A function is said 

to have rotational invariance if the calculated values are not subject to variation when 

arbitrary rotations are applied to the argument.  The texture metrics computed from the 

GLCM included variance, dissimilarity, entropy, contrast, correlation and homogeneity.  

Kernel sizes used to calculate the GLCM were specified as 3x3 and 5x5 pixels to take 

advantage of the high spatial resolution of the images.  These sizes were specified in order to 

capture more accurate representations of object edges, as slum neighborhoods tend to be very 

densely settled.  Convolution filters were applied to the panchromatic and near infrared bands 

of the QuickBird imagery to capture the magnitude and directions of linear features on the 

ground, which are unique characteristics of the built environment.  Sobel, Roberts, Gaussian, 

and directional filters were applied.   

“Proxies” of building density were measured by extracting the linear feature 

distributions for EAs and calculating the lacunarity of each EA.  Since lacunarity is a textural 

landscape measure, it can serve as a surrogate measure of the variations in building density.  

Lacunarity was coded and computed using the R programming language software.   Linear 

features were extracted by thresholding the convolved images mentioned above to create a 

binary image of straight-line features.  A threshold value of 250 was applied to generate 

linear features most representative of building boundaries and edges.  The edges of building 

boundaries were expected to contrast significantly with the surrounding unpaved roads and 

pathways of the neighborhoods.  More densely-built EAs were expected to have lower 

lacunarity values and a more crowded and clustered linear feature distribution.   

Various spectral bands and band ratios were derived and also included in the 

regression analyses.  Individual bands, band ratios, and indices such as the Normalized 

Difference Vegetation Index (NDVI) were derived from the multispectral images and mean 

values of all pixels within an EA were calculated for each spectral measure for data 

consistency.  Vegetation proportions per EA were calculated from a simple threshold-based 

NDVI classification that was demonstrated to be highly correlated with relative housing 

quality (Stow et al. forthcoming).  Proportions of impervious surface per EA were derived 

from a previously developed object-based vegetation-impervious surface-soil (VIS) 

classification of the AMA.  Vegetation proportions were also extracted from the object-based 
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VIS classification and compared to other vegetation metrics in order to find the most suitable 

vegetation predictors.  A principal components analysis (PCA) was also performed on both 

dates of multispectral images to generate spectral transform measures that tend to relate to 

brightness/albedo and relative image greenness.  This technique uses an orthogonal 

transformation to convert a set of spectral bands containing groups of possibly correlated 

brightness values (pixels) into a set of values of linearly uncorrelated spectral variables 

called principal components.  A PCA allows for the definition of a minimal set of non-

redundant channels (components), proper for discrimination studies in image processing 

(Ceballos & Bottino 1997).  There were a total of three principal components included in the 

analysis: 1) first principal component (PC1), representing a spectral transform image 

representative of image brightness, albedo, and reflectiveness;  2) second principal 

component (PC2), from which the transform extracted information on vegetation brightness 

through the identification and discrimination of spectral vegetation reflectance, primarily 

contained within the Green, Red, and Near-Infrared bands;  and 3) third principal component 

(PC3), which identified regions of homogeneous spectral values in the form of densely-built 

housing structures.   

To serve as additional predictors, binary classifications of vegetation and impervious 

surface were analyzed in Fragstats, a spatial pattern analysis program designed to compute a 

wide variety of landscape metrics for categorical map patterns.  Patch richness and patch 

density landscape metrics were generated using the binary classification products.  Stow, 

Lippitt & Weeks (2010) demonstrated that mean vegetation patch size and the proportion of 

vegetation patches per EA are valuable in the delineation of neighborhood boundaries in 

Accra, and therefore were explored to see whether they had a significant impact on the 

responses of survey variables within EAs.  All aforementioned imagery-derived metrics 

(IMs) will serve as independent or predictor variable inputs in the regression analysis.  

https://en.wikipedia.org/wiki/Orthogonal_matrix
https://en.wikipedia.org/wiki/Orthogonal_matrix
https://en.wikipedia.org/wiki/Correlation_and_dependence
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Table 1.  List of variable inputs into the exploratory regression model. 

3.4   Exploratory Regression Modeling 

The study was largely exploratory in nature in that there were a total of 29 different 

image-derived metrics used in multiple combinations to attempt to explain 27 different 

household data characteristics.  The EA, or enumeration area, comparable to an American 

census tract, was used as the spatial unit of analysis for both the 2003/2002 and 2009/2010 

datasets.  An exploratory bivariate regression was conducted using the IBM SPSS (Statistical 

Package for the Social Sciences) and the spatial statistics toolset in ArcGIS software.  

Pearson product-moment correlations were computed so as to explore all possible 

combinations of image metrics (IMs) and survey variables (SED) for a total of 783 

correlation analyses.  Pearson’s r measures the strength of a correlation (linear dependence) 

two variables  and  .  It is calculated using the equation 

 

where  and  represent the means of the two variables and the denominator can be 

described as the product of the sample standard deviations for  and  .  All bivariate 
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correlations that were statistically significant at the α = 0.05 level were used in exploratory 

ordinary least squares (OLS) multivariate regression models in both SPSS and ArcGIS.  The 

OLS general model was then computed for each combination and is specified in the 

following equation: 

 

 

where  is an independent or predictor variable,  is the dependent or response variable, 

and  is the error term.  The  coefficients express the average change in  for each unit 

change in .  Using this model, the independent variable inputs were metrics derived from 

the imagery, where the dependent variables included each variable from the survey data sets 

(see Figure 2).  The version of exploratory regression that was implemented is similar to a 

stepwise regression, but rather than looking for models with high  values, it determines 

which models pass specific regression diagnostics that are set as model parameters along 

with the basic assumptions of an OLS model.  Various thresholds for a minimum acceptable 

 value and a minimum coefficient p-value cutoff enable the exploration of various model 

fits.  A maximum VIF (variance inflation factor) value, quantifying the severity of 

multicollinearity in the OLS regression, was set at 4 to sift out over-specified models where ≥ 

2 IMs might have been highly intercorrelated.  A threshold for the minimum Jarque-Bera 

(JB) statistic p-value was set to α = 0.1, testing for goodness-of-fit with respect to skewness 

and kurtosis.  The Jarque-Bera statistic is calculated as follows: 

 

 

where n is the number of observations (degrees of freedom, ),  is the sample skewness, 

and  is the sample kurtosis (see Jarque & Bera 1987).  In classical statistics, a statistically 

significant Jarque-Bera probability would indicate the presence of a non-normal distribution 

of error terms in the form of skewness, kurtosis, and heteroskedasticity.  However, since this 

study is trying to explore the inter-slum variability in household characteristics through 

spatial regression techniques, a non-normal distribution of error terms provides a valid 

indication of spatial effects.  Therefore, models with significant JB probabilities will not be 

discarded, but rather explored through a switch in model specification.  A minimum 
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acceptable p-value for Global Moran’s I was also used to explore initial spatial 

autocorrelation in the residuals, another indicator of the need for a spatial model 

specification.   

Each model was ranked according to the model fit, measured by their respective adjusted 

coefficient of determination  and Aikaike Information Criterion (AICc) values.  The 

adjusted  value accounts for the number of predictor variables input into the model along 

with the sample size (number of EAs ) of each, and will decrease below the original  value 

if an explanatory variable is included that does not aid in the prediction of the dependent 

variables.   is calculated as 

 

 

where  is the proportion of total variation of the dependent variable explained by the 

predictor variables,  is the sample size, and  is the number of predictor variables.  The 

higher the  value, the more explanatory power the model has.  The AICc is another 

goodness of fit measure and is an asymptotically unbiased estimator of the information lost 

when model  is used to estimate model  (Aikaike 1973, 1974).  The AICc is a function of a 

model’s maximized log-likelihood ( ), the number of estimable parameters ( ), and a 

second-order term defined by Hurvich and Tsai (1989) that accounts for the observation 

sample size.  AICc is represented mathematically as  

 

 

 

and is designed to estimate the predictive accuracy of competing model hypotheses when the 

sample size is small compared to the number of parameters, as is the case with our dataset 

(Posada & Buckley 2004).   
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3.5   Spatial Heterogeneity & Regime Analysis: 

Searching for Structural & Spatial Instability 

 

In the presence of spatial heterogeneity and autocorrelation within the Accra EAs, a 

combined spatial error/lag and spatial regimes regression technique similar to that 

demonstrated by Curtis, Voss & Long (2012) was used to account for what Anselin (1996) 

referred to as “the intrinsic uniqueness of each location.”  Spatial autocorrelation and 

heterogeneity have the potential to affect inferences in a cross-section of spatial units, and 

furthermore can result in a nonspherical error variance, nullifying standard hypothesis tests 

(Anselin 1990).   

Results from the exploratory regression were transferred into OpenGeoDa in order to 

determine the correct spatial model selection using a series of Lagrange Multiplier (LM) 

tests.  One directional LM tests (LM[lag] and LM[error]) and their more robust forms 

(Robust LM[lag] and Robust LM[error]) were computed for each multivariate model in order 

to form a probability-based decision rule as follows:   

 

a) if neither LM test rejected the null hypothesis (  ≥ 0.05), no spatial regression 

was run;  

b) if one of the LM tests is significant, proceed with the spatial model specified by 

the respective LM test;  

c) if both LM tests reject the null hypothesis, refer to the significance of the Robust 

LM tests and proceed with the respective spatial model indicated by the most 

significant Robust LM probability.   

 

A spatial weights matrix was generated for the spatial regression techniques using an 

inverse Euclidean distance band, assisting in the quantification of the spatial relationships 

that exist between EAs.  An inverse Euclidean distance band weight computes a kernel 

weight that decays exponentially with increasing Euclidean (straight-line) distance between 

features.  Row standardization was used to account for the spatial sampling bias of the EAs.  

A bandwidth of 3.6 km selected as the critical distance that ensured all EAs had at least one 

neighbor.  This weights matrix was used in the spatial error/lag models to identify any spatial 

dependency of the values of the dependent variable on either the “neighboring” EAs (spatial 

lag) or a spatial dependency revealed within the error terms (spatial error).  A spatial lag 



 

 

21 

model incorporates spatial effects by including a spatially lagged dependent variable in the 

regression as an additional predictor, modifying the OLS model to  

 

 

 

where  is the spatially lagged variable for the weights matrix and  is the spatial 

coefficient.  The lag model treats spatial correlation as a process or effect of interest, where 

the values of  in one unit of analysis are directly influenced by the values of  in 

neighboring units.  Conversely, the spatial error model examines the spatial autocorrelation 

between the residual error terms of adjacent areas.   The error model is specified as  

 

 

 

with           

 

where  is the spatial error coefficient and  is a vector of uncorrelated error terms.  This 

model treats spatial autocorrelation as a nuisance and disregards the idea that spatial 

correlation may reflect some meaningful process and treats error as an effect of the model 

misspecification of independent variables.  AICc values were calculated and used to 

distinguish whether the global spatial regression was an improved model fit.  A decrease in 

the AICc by at least 3 was considered to be the threshold indicative of an improved model 

(Fotheringham, Brundson & Charlton 2002).   

The spatial regimes approach involved regressing independent variables with the 

dependent variable whose regression coefficients designated distinct “regimes” to create a 

structurally stable model.  Regimes were characterized by clustered ranges of coefficient 

values in particular spatial units – in this case, EAs.  This separated the dataset into discrete 

regions made up of spatially-grouped EAs for which an OLS regression was run separately, 

using the same predictors.  In considering a two-regime model where the observations 

composing the regimes have been considered a priori into one of the two regimes, the model 

notation would be expressed as 
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where  and  designate the distinct regimes.  The spatial regime method allowed for the 

testing of the overall model fit as well as the specific stability in the residual estimates when 

the unit of analysis is theoretically, or in this case, also physically bounded (Curtis, Voss & 

Long 2012).  We hypothesized that if each regime was associated with a particular region of 

slum neighborhoods, the spatial regimes approach would then essentially become a test for 

regional homogeneity (Anselin 1990).  The combination of an appropriate model 

specification for a process as well as a set of carefully chosen covariates has been 

demonstrated to provide enough to explain the variation in the differential values of a spatial 

variable for a specific region of analysis (Anselin 1996).   

3.6   Comparing Model Results to a Geographically 

Weighted Regression 

 

Spatial regression results were compared to results provided by a geographically 

weighted regression (GWR) model.  In a GWR model, the relationships between the unit 

under observation and its neighboring spatial units are considered based upon a specified 

contiguity matrix.  The GWR model specification provides a local version of spatial 

regression or process by fitting a model to each unit of analysis, incorporating explanatory 

variables that fall within a specified bandwidth or kernel definition.  Local coefficients are 

estimated for each independent variable included in the regression, of which the magnitude is 

indicative of the degree of contribution in explaining local variation in the dependent variable 

(Fotheringham, Brundson & Charlton 2002).  The GWR model is specified as  

 

 
 

where a unique set of parameters is computed for each observation  at a set of geographic 

coordinates .  Due to the lack of a completely contiguous dataset and for the ease of 

comparison with the global models, the areas in between EAs in this case were considered 

empty space.  Therefore, neighbors will be determined in this case by the bandwidth 

specified by the spatial error/lag regression previously described.  Comparing global spatial 

model results to a local GWR model was hypothesized to provide an additional measure of 
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the robustness of the results.  Clustering of residuals was evaluated at the local level using 

local Moran’s I.   

 

3.7   Evaluating Temporal Robustness using the 

Bootstrapping procedure 

 

After the best statistically significant multivariate correlations were established 

between imagery metrics and household variables, the robustness of the regression models 

was evaluated.  The same modeling procedures run for the 2000-2003 data ( ) were used 

to build multivariate models for  and Δt.  When comparable passing models were 

constructed, a bootstrapping procedure elucidated by Efron (1979) was utilized to create a 

distribution of  values for the  , and Δt models in order to observe the range of 

model fits for each multivariate regression.  The bootstrap approach is based upon random 

sampling with replacement, where specific observations may or may not be sampled multiple 

times within a model.  The advantage of bootstrapping is that the range of  values may be 

analyzed to test for model robustness and stability (Efron 1979).  Smaller ranges in   

values infer that models are more robust in their prediction of values and have a strong 

potential to indicate socioeconomic conditions and demographic characteristics based on 

metrics derived from high-resolution satellite imagery.   

3.8   Investigating Change Over Time:  The Search for 

Proxies 

 

 The final step in the analysis of image metrics as indicators of ground survey data 

was to examine how strongly correlated changes in image metrics (ΔIMs) were to changes in 

the socioeconomic and demographic data (ΔSEDs).  The main goal of this component was to 

investigate the “predictive” (indicative) ability of ΔIMs with respect to ΔSEDs, creating 

proxy measures of the household environment using imagery.  The same processes run for 

the static analysis of the image metrics were utilized, replacing the temporally static  
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components with Δ variables in the regression.  The models then followed the formula 

 

where  and  would represent  and  , respectively.  The bootstrapping 

approach was applied to reveal the most robust multivariate models, indicating which ΔIMs 

had the highest potential for use as proxy measures of ground data.   

 

 

Figure 2.  A flowchart of the methods used in the analysis of the imagery and survey 

data.   
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CHAPTER 4  

RESULTS 

 

Given that the study was conducted primarily in an exploratory manner, the results 

presented here will focus largely upon the models that provided the strongest and most 

significant results.  These results will be discussed in a stepwise method, following the 

methodological modeling procedures outlined in the prior sections.   

 

4.1   Exploratory Bivariate Regression Analysis and 

OLS Modeling  

 

The exploratory bivariate correlations indicated that there are a large variety of image 

metrics that are able to explain proportions of the variance in demographic and housing 

quality variables.  Table 2 presents the results from the multivariate models formulated 

through the exploratory combinatory multivariate analysis for the 2002 image.  All models 

for each temporal segment were examined for multicollinearity through the comparison of 

VIFs (variance inflation values) and condition numbers (CN).  Models with any existing 

multicollinearity between two or more independent variables were discarded.  The Breusch-

Pagan and Jarque-Bera tests were performed to explore whether each selected model 

contained residuals with a non-normal distribution or any evidence of heteroskedasticity, 

indicators of the need for spatial model specifications.   

4.1.1   2002 MODELS 

 

Eleven of 19 2002 OLS multivariate models were able to explain over 20% of the 

variance in their respective survey variables using 14 different image metrics as the 

predictors.  All 19 models were significant at the confidence level of α = 0.05 with all 

predictor variables meeting the same α-level.  The disposal of trash through collection ( = 

0.78) and local offsite dumping (  had the highest correlations.  Over 75% of the 

variance in trash disposal methods can be accounted for using mean values of three metrics – 

a) first principal component (PC 1) of the 2002 multispectral image, which upon visual 
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interpretation is a representation of scene brightness (i.e., albedo); b) third principal 

component (PC 3), a spectral proxy representation of vegetation amounts in this case; and c) 

average elevation, derived from a high spatial resolution DEM (digital elevation model).  The 

coefficient relationships for trash disposal models suggest that EAs that mainly undergo 

systematic trash collection are located within less densely settled neighborhoods with more 

vegetation, containing houses constructed with less reflective rooftop building materials (e.g. 

– non-metal materials) and built at relatively higher elevations.  EAs containing residents that 

primarily dispose of household trash in an offsite location tend to have an inverse 

relationship.  Traditionally, EAs situated at higher elevations belong to residents of a higher 

socioeconomic status and are a few kilometers inland from the coast.  These areas have 

primarily been settled by the Ga ethnic group, which was historically known as a coastal 

fishing culture that tends to live toward more low-lying coastal regions more at risk to 

flooding and sewage runoff, putting these populations at a higher risk for disease (Rain et al. 

2011)(Weeks et al. 2006).   

Moderately strong correlations were found between brightness values in the Blue 

band of the multispectral imagery and proportions of households in each EA whose primary 

disposal of sewerage is either through a Kumasi ventilated pit latrine (KVIP;  = 0.34) or 

through a method other than a flushing toilet or a KVIP (  = 0.38).  An inverse relationship 

between average Blue band brightness and the proportion of households that dispose of their 

sewerage though a method other than a flushing toilet or KVIP, where if an increase in 

average EA Blue band brightness values is observed, a decrease in % Toilet (KVIP) would be 

expected.  Other methods of sewerage disposal may include traditional pit toilets, buckets or 

pans, or no formal toilet facility at all.  Higher Blue band brightness in the urban slum 

neighborhoods of Accra correspond to rooftops that are constructed from highly reflective 

building materials like slate, most commonly observed in the coastal slum regions of Accra, 

whereas less reflective building materials are more commonly found in the older, more 

established inland slum regions surrounding the neighborhood of Nima (see Appendix 1), 

where most roofs are made of corrugated metal that has rusted or faded over time.  Almost 

intuitively, an inverse relationship was observed between the proportion of households that 

use KVIPs as the primary type of toilet facility and Blue band brightness.  These results 

provide a very good indication of a severe health risk within EAs that do not primarily use 
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flushing or KVIPs for sewerage, as the stagnant decomposition of sewerage is closely related 

to various communicable diseases, insects that may act as vectors of these diseases, and poor 

sanitation conditions for food preparation and sleeping quarters.   

Approximately 45% of the variance in the proportions of households of the Ga ethnic 

group in each EA was explained using a combination of the spatial variance of pixels in the 

near-infrared (NIR) band brightness values and average pixel values per EA derived from a 

Laplacian-filtered panchromatic image.  Both predictors were statistically significant at the α 

= 0.01 and α = 0.05 confidence levels.  With an increase in the variance of NIR brightness 

values and a decrease in the average Laplacian-filtered pixel value, more simply stated as a 

decrease in building density, we would expect to observe an increase in the proportion of 

households belonging to the Ga ethnicity.  Promising results were also apparent in the 

models for both the % of the sample population of both the Christian and Islamic populations 

with  = 0.59 and  = 0.71, respectively.  The textural metric of image lacunarity was 

included as a statistically significant predictor at the α = 0.01 significance level in both OLS 

models.  EAs with higher average lacunarity values are considered to be regions that contain 

pixels that are more heterogeneous to their respective surrounding pixels and provide a 

measure of image “gappiness”, another proxy measure of building density.  These results 

show that with an increase in building density comes an increase in the % of households per 

EA belonging to the Christian religion – the inverse standing for the % of Muslim 

households per EA. This result is consistent with prior studies that have demonstrated that 

EAs in Accra with higher building density are moderately correlated with lower housing 

quality (Tsai et al. 2012), and neighborhoods with higher concentrations of the population 

that are non-Christian are at a larger risk for high levels of child mortality (Weeks et al. 

2006).   

The regression results also indicated very strong correlations between various textural 

transformations and the spatial distribution of religious groups (% of residents that are of the 

Christian and Islamic faith,  and , respectively) within the specific slum 

neighborhoods of Accra.  Through a combination of the variance in image pixel correlation 

(a component of the GLCM), and mean EA values of both lacunarity, a textural 

transformation that provides additional information on building density through what is  
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known as “image gappiness” (Myint & Lam 2005), and a convoluted panchromatic image 

using a Sobel edge-detection filter to capture a proxy indicative of building density.   

A majority of independent variables had regression coefficients that were below 0.01, 

indicating that only large increases or decreases in image metric values would have 

significant relationships with the variability in the changes in survey variables.  Standardized 

residuals for a selection of models with the strongest correlations are presented in Figure 2.  

Severe over- and under-prediction of standardized residuals was rarely observed.  A series of 

Lagrange Multiplier (LM) tests were performed to detect the presence of spatial dependence 

of spatial heterogeneity, with the results presented in Table 3.  Both one-directional and 

robust versions of the LM [lag] and LM [error] tests were run to test if the models were 

missing a spatially lagged dependent variable or if any spatial error dependence existed.  For 

the 2002 series, only one model indicated the presence of spatial effects, % Muslim.  A 

statistically significant LM [lag] value suggested that a spatial lag model be specified to 

account for the effects of neighboring EAs on the dependent variable.   

4.1.2   2010 MODELS 

 

For the 2010 series, only 11 models passed all diagnostic tests, with only six of those 

11 accounting for > 20% of the variance in their respective survey variables using the image 

metrics.  Both the collected trash and trash burned or buried onsite models produced 

evidence of heteroskedasticity and had non-normally distributed residuals, failing both the 

Jarque-Bera and Breusch-Pagan significance tests.  The % Ga per EA model exhibited a 

moderately strong correlation as for the 2002 data, with the combination of average Red band 

and Simple Ratio vegetation index (SR) brightness values explaining 48 % of the variance.  

Both independent variables established positive relationships between brightness and the % 

Ga per EA, confirming the inverse relationship between the proportion of Ga and the amount 

of vegetation per EA established in the 2002 model.  Models for the % Christian and % 

Muslim per EA produced very strong results, with  = 0.41 and  = 0.56, respectively.  A 

relatively high amount of variance in both models was explained using average values from 

the Green/Blue band ratio alone.  The % of one room households per EA, a variable not 

present in the Accra SS dataset, was included in the 2010 series of models based on the idea 

that EAs with a higher proportion of one-room households are hypothesized to be built in 
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overcrowded neighborhoods with higher building density.  About 21 % of the variance in the 

% of one-room households was explained by the variance in EA vegetation, demonstrating 

the positive relationship between vegetation amounts and densely populated EAs.   

A moderately strong relationship was also produced for the model for % overweight 

(BMI = 25+), with a Laplacian-filtered image (related to building density) accounting for 

29% of the variance.  As mean EA Laplacian values increase, we can expect to observe an 

corresponding increase in both building density and the proportion of the population with 

BMIs of greater than 25.  A standardized β- coefficient of 1.91 for the Laplacian values 

variable show that as for each 1% increase in mean Laplacian values, the percentage of 

people considered overweight increase by about 2%.  Both Jarque-Bera and Breusch-Pagan 

tests were statistically significant (p < 0.000) and were examined under a GWR model that is 

discussed later.  A positive relationship between vegetation proportions and % underweight 

was established, with EA vegetation proportions explaining 13% of the variance in the 

distribution of the underweight population of the AMA.  These results invite further 

investigation into the relationship between health variables, building density, and vegetated 

land cover.   

Overall the indicative power of high-spatial-resolution image metrics from 2010 were 

lower than those for the 2002 image metrics.  This may be attributed to the densification of 

settlements shown in Tsai et al (2012) and loss in vegetation proportions demonstrated in 

Stow et al. (forthcoming), creating a more heterogeneous physical environment to be 

observed within the slum neighborhoods.  This could also be attributed to the sampling error 

and uncertainty between the two studies.  Only 6 of 12 survey variables from the 2009-2010 

HAWS dataset that were comparable between surveys produced passing models, compared 

to 11 of 12 from the 2003 Accra SS.  This may indicate that even though the sampling design 

and questionnaire from the HAWS was modeled directly after the Accra SS, the effects of 

selection bias may be present and skewing the results.   

Once again, most predictor variables had miniscule coefficient values below 0.10.  

Diagnostics for spatial dependence indicated that all passing models were subject to spatial 

heterogeneity.  The Global Moran’s I statistics and probabilities provide no indication of 

spatial autocorrelation in the dataset.   However, statistically significant probabilities for the 
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one-directional LM [error] and Robust LM [error] tests (displayed in Table 5) signify that 

spatial heterogeneity is present in the form of heteroskedasticity.   

4.1.3   Δ MODELS 

 

Fourteen of 19 Δ models had the indicative power to explain > 20% of the variance in 

the changes in survey variables between 2003-2010 using satellite image metrics, with 11 of 

19 multivariate models accounting for > 30% of the variance alone.  A table is presented in 

Appendix 2, listing the amount of change observed in each EA included in the study.  Model 

results and diagnostics for residual normality and heteroskedasticity are presented in Table 6.  

A total of five models had non-normal residual distributions, providing an indication of the 

possible spatial effects that might be in play and suggesting further investigation of model 

specification through a more localized model.   

As with the 2002 models, the changes in image metrics were moderately correlated 

with changes in sewerage variables, more specifically, the proportion of households that 

primarily utilize KVIPs and the proportion of households whose disposal of sewerage is 

through neither a flushing toilet nor a KVIP.  As the % vegetated land cover and average 

image brightness decrease, an increase in households that do not dispose of sewerage through 

flushing toilets of KVIPs is observed (  = 0.38).  EAs with higher proportions of the 

population not using either a KVIP or flushing toilet are located in the older, more 

established slum regions surrounding the neighborhood of Nima, where the addition of 

formal sewage infrastructure may not be possible.  These slums are also very densely built 

with little to no vegetation existing, supporting the results of the Δ model.   

Change in % of households with collected trash and % of households with trash 

dumped offsite reappeared on the list of models with moderately strong correlations (  = 

0.32,  = 0.39, respectively), with change in % trash dumped offsite model including the 

third principal component (PC3) as a predictor variable.  Moderately strong results were 

produced by the Δ % Christian (  =  0.35) and Δ % Muslim (  = 0.31) models once again.  

The Green/Blue band ratio was included as an independent predictor, yet with less statistical 

significance.  The remaining predictors (second principal component, % vegetation) establish 

a relationship between religious affiliation and EA vegetation proportions, not yet produced 

by model results in the previous two time series datasets.  The positive relationship between 
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% Christian and % vegetation suggest that EAs with higher proportions of vegetated land 

cover have higher proportions of the population that are Christian.  This is confirmed by the 

inverse relationship between Δ % Christian and Δ second principal component (PC2) 

brightness values, where lower Δ PC2 values are representative of higher amounts of 

vegetated land cover.  The relationship between Δ % Muslim and Δ PC2 indicate the exact 

opposite connection to EA vegetation fractions.   

Figures 5-7 present three image metrics that were included as significant model predictors 

that best represent the changes in the imagery between 2002-2010.  There was a general 

increase in values for image lacunarity (Figure 5) over the 8-year time span, reflecting the 

densification of the built environment within slum neighborhoods, mostly driven by an 

increase in population that demands the construction of new, informal housing structures.  

The neighborhood of Sodom & Gomorah (Figure 5, outlined), along with the surrounding 

Korle Lagoon area, has more recently been a focal point of incoming migrants from the more 

northern regions of Ghana and surrounding countries in the Sahel region of West Africa 

(Rain et al. 2011).  This is demonstrated by an increase in the composition of migrants in 

Sodom & Gomorah from 32% to approximately 79% of the population, a 146% increase over 

the course of 10 years.  Migrants in Sub-Saharan Africa have a higher health risk than the 

rest of the population, as they tend to live in overcrowded neighborhoods at lower elevations 

that are prone to flooding and other health hazards (Rain et al. 2011; Sverdlik 2011; UNHSP 

2003).  New building development and building densification was found to correlate 

moderately to housing quality (Tsai et al. 2012).  Therefore, it is vital to track the changes in 

the composition of migrants in slum neighborhoods over time in order to monitor and 

manage levels of morbidity and poor socioeconomic status.   

Figure 6 displays the 2
nd

 principal component (PC2) of the multispectral images at 

both dates.  Lower brightness values in PC2 correspond to vegetated land cover, of which 

there is a visible decrease from 2002-2010.  Neighborhood levels of vegetation and other 

environmental factors within slum neighborhoods have been demonstrated to be connected to 

differing levels of child mortality (Jankowska et al. 2013), housing quality, and 

socioeconomic status (Stow et al. 2012).  The results of modeling the changes over time in 

Accra, presented in Table 6, now indicate that vegetation proportions are also connected to 

different demographic characteristics of the population such as the percentages of the  
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Figure 6.  A comparison of the 2
nd

 principal component (PC2), derived from 

QuickBird multispectral images for (a) 2002 and (b) 2010 images in the 

Gbegbeyise (west of the river) and Chokor neighborhoods.  Both dates revealed 

that PC2 carries a large portion of spectral vegetation data and were considered 

vegetation proxies.   
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Figure 7.  A comparison of the Blue/Green (B/G) band ratio, derived from 

QuickBird multispectral images for (a) 2002 and (b) 2010 images in the 

Gbegbeyise (west of the river) and Chokor neighborhoods.  The B/G image 

metric was a significant predictor in five of the highest performing models.   
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population that belong to the Christian and Islamic faiths, ethnic groups like the Akan, Ga, 

and Ewe, and also physical household characteristics such as trash disposal and sewage 

facilities.   

4.2   Estimating Indicators of SEDs through Global 

Spatial Regression Modeling 

 

The LM tests for the Δ models indicated that a spatial lag model should be specified 

for the Δ trash dumped offsite and a spatial error model for Δ bednet use.  Global Moran’s I 

was statistically insignificant in all but five models, suggesting that spatially autocorrelated 

residuals may not be the number one concern within this dataset.  The LM test results also do 

show the need for a spatial process model specification on most occasions.  

For the 2002 model series, a global spatial lag model was fit to Δ % Muslim, based 

upon the statistically significant result from the LM[lag] test.  A decrease in the  value 

from -44.57 to -51.74 was observed along with an increase in log-likelihood value from 

26.28 to 30.87, signifying an improved model fit.  This is confirmed by the coefficient of the 

spatially lagged variable (  = -0.77), which is highly significant (p = 0.0007487). The 

magnitude of all other estimated coefficients slightly increased from the classical OLS model 

(see Table 8), indicating that a portion of explanatory power of the independent variables 

originally attributed to their EA values can now be accounted for by values of the respective 

independent variables in “neighboring” EAs.  An increase in the statistical significance of all 

predictor variables resulted from the switch in model specification, and the value of the 

likelihood ratio test was also highly significant (p = 0.0025), indicating the importance of the 

spatial autoregressive term.   

 

Two spatial process models were specified in the Δ  series – Δ trash 

dumped offsite and Δ household bednet use.  Both LM [lag] and LM [error] values were 

statistically significant, but upon examination of the Robust LM values, the Robust LM [lag] 

test had a lower probability, indicating the need for a lag model fit.  Moran’s I (I = 0.15) was 

also highly significant (p < 0.0000) for Δ trash dumped offsite, signaling the presence of 

moderate spatial autocorrelation in the form of clustering.  The spatial lag model produced a 

decrease in  value from 22.54 to 20.62, indicating an improved model fit, confirmed by  
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 - % Muslim Spatial Lag Model Results 

 Coefficient Std. Error Probability 

Variable OLS Lag OLS Lag OLS Lag 

Intercept -1.087 1.652 0.128 0.193 0.0000 0.0007 

Dissimilarity 0.001 0.012 0.003 0.002 0.0026 0.0000 

Blue band -0.004 -0.006 0.001 0.0009 0.0002 0.0000 

Lacunarity -0.009 -0.012 0.002 0.0015 0.0000 0.0000 

       

OLS -  = -44.57 

Spatially lagged -  = -51.74 

OLS  = 0.71 

Likelihood Ratio  9.169 

 

Table 8.  % Muslim results for the OLS and spatial lag global models. 

 

Δ Trash Dumped Offsite – Spatial Lag Model Results 

 Coefficient Std. Error Probability 

Variable OLS Lag OLS Lag OLS Lag 

Intercept 0.660 0.353 0.716 0.119 0.000 0.003 

45⁰ Filter 0.191 0.191 0.067 0.058 0.008 0.001 

- Green/Blue -0.014 -0.015 0.004 0.003 0.001 0.000 

Rho    0.595  0.205  0.003 

       

OLS -  = 22.54 

Spatially lagged -  = 20.62 

OLS  = 0.38    Spatial lag pseudo  = 0.52     

Likelihood Ratio  3.911 

 

Table 9.  Δ % trash dumped offsite results for the OLS and spatial lag global models. 
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the significance of the likelihood ratio test (p = 0.47).  A decrease in independent variable 

coefficients was observed along with a decrease in the standard error values for each 

predictor, demonstrating the importance of the spatial autoregressive term in modeling the 

effects of “neighboring” EAs on the variability in the % of households that dump household 

trash offsite.  Lambda was highly significant with a value of  = 0.595.   

A spatial error model was fit to Δ bednet use, providing mixed indications of model 

fit improvement (Table 11).  The  value decrease from -23.67 to -25.81, but the 

likelihood ratio test was not statistically significant at the α = 0.10 level.  Standard errors 

increased in each predictor variable for the error model, yet the variable coefficients slightly 

decreased, attributing some of their significance to the λ coefficient (λ = 0.489).   

A dataset with a small sample size has the ability to produce a Type-II false-positive 

indication of spatial autocorrelation or spatial heterogeneity within the distribution.  This 

may be attributed to a misrepresentation of the population through sampling bias and also has 

the potential to skew model results due to having low degrees of freedom.   

 

 

 

Δ Bednet Use – Spatial Error Model Results 

 Coefficient Std. Error Probability 

Variable OLS Lag OLS Lag OLS Lag 

Intercept 0.552 0.547 0.104 0.112 0.000 0.000 

Sobel Threshold -1.446 -1.450 0.516 0.521 0.009 0.005 

Lambda λ  0.489  0.253  0.054 

       

OLS -  = -23.67 

Spatially lagged -  = -25.81 

OLS  = 0.19    Spatial lag pseudo  = 0.29 

Likelihood Ratio  2.498 

 

Table 10.  Δ % bednet results for the OLS and spatial error global models. 
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AICc Values (Assessments of Model Fit) 

Dependent Variable 
2002 Models Δ Models 

OLS Lag OLS Lag 

Electricity -80.58   -73.51   

Charcoal Use -48.41   -32.74   

Trash (collected) -15.87   22.21   

Trash (dumped offsite) -14.93  24.00 19.25 

Trash (burned or buried) -98.47  -92.69   

Sachet Use 0.55  0.55  

Toilets (KVIP) -3.75  1.87   

Toilets (flush or KVIP) -3.42  1.88   

Bednet Use -87.62  -23.67  -26.81 

Possessions Index -67.37  -60.99   

Ethnicity (2000 Census)        

    % Akan -39.62  -59.85   

    % Ga -53.65  -62.89   

    % Mole-Dagbani -63.03  -65.39  

Religion (2000 Census)         

    % Christian -33.52   -34.46   

    % Muslim -44.57 -51.74 -42.20   

Migrants(%) -101.42   -22.11  

2000 Slum Index 2.94   -18.16   

2000 Housing Quality Index 5.61  0.91   

 

Table 11.   AICc values for both OLS and global spatial error models for 2002 and 

Δ  dates. A decrease in the AICc value of  > 3 is considered an indication of 

improved model specification. Values in green represent improved models, where 

values in yellow represent error or lag models that did not meet the criteria to be 

considered an improvement of model fit.  A value in blue denotes the specification of an 

error model.   
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4.3   Comparing Results to a GWR Model & a Spatial 

Regimes Approach 

 

Results from the global regression models were compared to the results provided by a 

geographically weighted regression (GWR).  A majority of models contained severe design 

problems and would not compute due to the small sample size and low degrees of freedom.   

The premise of the spatial regimes approach is to divide the dataset into relatively 

homogeneous regions and then model each region separately to create a dual specification 

that would assist in accounting for the effects of spatial heterogeneity.  A major issue was 

encountered due to a fatally low amount of degrees of freedom in each model.  In order to 

proceed with the spatial regimes approach, a much larger sample of EAs would need to be 

gathered, increasing the degrees of freedom for each model and allowing for a proper model 

fit for each spatial regime.   
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CHAPTER 5 

DISCUSSION & CONCLUSIONS 

 

The relationships between neighborhood ethnic proportions and image metrics have 

demonstrated to be significant products of this study, due to the link between neighborhood 

ethnic compositions, neighborhood religious composition and differing levels of child 

mortality (Weeks et al. 2006).  As previously stated, a person who belongs to a non-Christian 

faith or is a member of the Ga ethnic group will tend to have a higher risk of bad health.  If 

certain image metrics such as vegetated land cover fractions or building density proxies can 

correctly indicate regions where specific ethnic or religious interest groups tend to live based 

on the physical properties of their environment, policy makers and health officials may find it 

easier to dispatch the necessary aid or resources to help investigate and combat high levels of 

child mortality and other forms of disease.  Sverdlik (2011) has underlined that informal 

settlements across sub-Saharan Africa are undergoing many emerging urban health risks and 

inequalities, many of which are reflected by the environment they reside in.  Sverdlik (2011) 

also denotes that these communities are currently facing the “double burden” of both 

communicable and non-communicable diseases, and society must create interventions to 

ensure that populations living in these informal regions may obtain a higher health and 

socioeconomic status.   

An emphasis must be placed on the fact that the relationships within this study are 

only limited to the aforementioned slum regions.  In order to comprehensively understand the 

dynamic relationships between the environment and the characteristics of the populace 

within, a call must be made to examine non-slum areas.  Limiting our examination of 

population – environment relationships to only slum regions has likely limited the range of 

variables that may be explored, with the possibility of skewing the interpretation or 

understanding of the dynamics of the urban environment and its morphology.  The 

comparison of the ability of image metrics to indicate survey characteristics must be 

compared between slum and non-slum areas.  Understanding areas with a variety of 

socioeconomic characteristics may enable different relationships to be discovered and 

contrasted with slum regions that could possibly be at more or less of a disadvantage than 

previously believed.   
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It has been demonstrated that there are moderately strong, significant relationships 

between remotely-sensed variables and household attributes gathered from ground survey in 

slum neighborhoods of Accra, Ghana.  The exploitation of remote sensing metrics as proxies 

for socioeconomic and health conditions opens up new pathways in the fields of social and 

public health research.  The creation of remote proxy variables for health and welfare 

characteristics allows for a nuanced method of data collection in developing countries.  This 

study takes a step forward in advancing the increasing capabilities of remote sensing in the 

public health, socioeconomic, and demographic sectors, and will aid in the analysis of further 

data in Ghana.  Individual and household surveys normally costing tens of thousands of 

dollars and large investments of time could potentially be parsimoniously streamlined.  

Observing changes in urban morphology within a sub-Saharan African developing city is 

becoming increasingly important, specifically within slum neighborhoods.  It is in these cities 

where most of the world’s population increase will occur in the next 50 years.  

Distinguishing where these changes are taking place is the first step in understanding how to 

predict the health and well-being of the residents in these neighborhoods. The results carry 

implications from a policy creating standpoint, as a healthy city is a happy, efficient and 

more prosperous city.   

  

 



 

 

50 

REFERENCES 

 

Aikaike, H. 1973.  Information theory and an extension of the maximum likelihood principle.  

Second International Symposium on Information Theory.  Akademiai Kiado, 

Budapest.  

Aikaike, H. 1974.  A new look at statistical model identification.  IEEE Transactions on 

Automated Control 19: 716-723.   

Anselin, L.  1988.  Spatial Econometrics: Methods and Models. Kluwer Academic 

Publishers, Dordrecht.  119-135.  

Anselin, L.  1990.  Spatial dependence and spatial structural instability in applied regression 

analysis. Journal of Regional Science 30:185-207.   

Arivazhagan, S. and Ganesan, L.  2003. Texture classification using wavelet transform. 

Pattern Recognition Letters 24: 1513-1521. 

Bharati, M., Liu, J. & MacGregor, J.  2004. Image texture analysis: methods and comparison. 

Chemometrics and Intelligent Laboratory Systems 72:57-71.   

Ceballos, J. & Bottino, M.  1997.  The discrimination of scenes by principal components 

analysis of multi-spectral imagery. International Journal of Remote Sensing 18(11): 

2437-2449.   

Curtis, K., Voss, P. and Long, D.  2012.  Spatial variation in poverty generating processes: 

Child poverty in the United States. Social Science Research 41:146-159.   

Dong, P.  2000. Test of a new lacunarity estimation method for image texture analysis.  

International Journal of Remote Sensing 21 (17): 3369-3373.  

Efron, B.  1979. Bootstrap methods: another look at the jacknife. The Annals of Statistics 

7(1):1-26.   

Entwisle, Barbara. 2007.  Putting People Into Place.  Demography 44 (4) November 2007: 

687-703. 

Engstrom, R., E. Ashcroft, H. Jewell, and D. Rain. 2011. Using Remotely Sensed Data to 

Map Variability in Health and Wealth Indicators in Accra, Ghana. In Joint Urban 

Remote Sensing Event (JURSE), 2011 Joint, 145-148. IEEE. 

doi:10.1109/JURSE.2011.5764740. 

Fitch, D., Stow, D., Hope, A. & Rey, S.  2010. MODIS vegetation metrics as indicators of 

hydrological response in watersheds of California Mediterranean-type climate zones. 

Remote Sensing of Environment 114:2513-2523.  

Fotheringham, A., Brudson, C. & Charlton, M.  2002.  Geographically Weighted Regression: 

The analysis of spatially varying relationships.  Hoboken, NJ.  Wiley.  

Giroux, S. 2008. Child Stunting Across Schooling and Fertility Transitions: Evidence from 

Sub-Saharan Africa. DHS Working Papers, No. 57. Calverton, Maryland, USA: ICF 

Macro.   



 

 

51 

Graesser, J., A. Cheriyadat, R. Vatsavai, V. Chandola, J. Long, E. Bright. Forthcoming. 

Image Based Characterization of Formal and Informal Neighborhoods in an Urban 

Landscape. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing. Forthcoming.  

Hay, Simon I., David J. Rogers, G.Dennis Shanks, Monica F. Myers, and Robert W. Snow. 

2001. Malaria Early Warning in Kenya. Trends in Parasitology 17 (2) (February 1): 

95-99. doi:10.1016/S1471-4922(00)01763-3. 

Herold, M., X. Liu, K. Clarke. 2003. Spatial Metrics and Image Texture for Mapping Urban 

Land Use.  Photogrammetric Engineering & Remote Sensing 69 (9) (September 

2003): 991-1001.  

Hurvich, C.M. & Tsai, C. L.  1989.  Regression and time series model selection in small 

samples.  Biometrika 76: 297-307.   

Jankowska, M., Benza-Fiocco, M., Weeks, J.R.  2013.  Estimating spatial inequalities of 

urban child mortality.  Demographic Research 28(2): 33-62.   

Jarque, C., Bera, A., 1987. A test for normality of observations and regression residuals. 

International Statistical Review 55, 163{172. 

Jensen, J.R.  1996. Introductory Digital Image Processing, 3
rd

 Edition, Prentice Hall Inc., 

187-192. 

Kelly, M., Blanchard, S.D., Kersten, E., & Koy, K.. 2011. Terrestrial Remotely Sensed 

Imagery in Support of Public Health: New Avenues of Research Using Object-Based 

Image Analysis. Remote Sensing 3 (11) (October 27): 2321-2345.  

Massey, Doreen.  1994. Space, Place and Gender. University of Minnesota Press, 

Minneapolis, MN.  

 

Mbuya, M., M. Chideme, B. Chasekwa, and V. Mishra. 2010. Biological, Social, and 

Environmental Determinants of Low Birth Weight and Stunting among Infants and 

Young Children in Zimbabwe.  Zimbabwe Working Papers, No.7. Calverton, 

Maryland, USA: ICF Macro. 

Moller-Jensen, L. 1997. Classification of Urban Land Cover Based on Expert Systems, 

Object Models and Texture.  Computers, Environment and Urban Systems 21 (3-4): 

291-302. 

Moller-Jensen, Lasse, and Michael H. Knudsen. 2008. Patterns of Population Change in 

Ghana (1984–2000): Urbanization and Frontier Development.  GeoJournal 73 (4): 

307-320. 

Moudon, A. 1997. Urban morphology as an emerging interdisciplinary field. Urban 

Morphology 1 (1997): 3-10. International Seminar on Urban Forum, 1997.  

Myint, S.W. and Lam, N.  2005.  A study of lacunarity-based texture analysis approaches to 

improve urban image classification.  Computers, Environment and Urban Systems 29: 

501-523. 



 

 

52 

Myint, S.W., Mesev, V., and Lam, N.  2006.  Urban Textural Analysis from Remote Sensor 

Data: Lacunarity Measurements Based on the Differential Box Counting Method.  

Geographic Analysis 38: 371-390.  

Openshaw, S.  1984.  Ecological fallacies and the analysis of areal census data.  Environment 

and Planning A 16: 17-31.   

Phinn, S., M. Stanford, P. Scarth, A. T. Murray, and P. T. Shyy. 2002. Monitoring the 

Composition of Urban Environments Based on the Vegetation-impervious Surface-

soil (VIS) Model by Subpixel Analysis Techniques.  International Journal of Remote 

Sensing 23 (20): 4131-4153.  

Posada, D. & Buckley, T.  2004.  Model Selection and Model Averaging in Phylogenetics: 

Advantages of Aikaike Information Criterion and Bayesian Approaches Over 

Likelihood Ratio Tests.  Society of Systematic Biologists 53(5): 793-808. 

Raghu, P.P., Poongodi, R. and Yegnanarayana, B.  1995. A combined neural network 

approach for texture classification. Neural Networks 6:975-987. 

Rain, D., Engstrom, R., Ludlow, C., & Antos, S. 2011. Accra Ghana: A City Vulnerable to 

Flooding and Drought-Induced Migration.  The Global Report On Human Settlements 

2011: Chapter 4 (Climate Impacts on Urban Areas). 

Rashed, T., Weeks, J.R., Roberts, D., Rogan, J., & Powell, R. 2003.  Measuring the Physical 

Composition of Urban Morphology Using Multiple Endmember Spectral Mixture 

Models.  Photogrammetric Engineering and Remote Sensing 69 (9): 1011-1020. 

Rashed, Tarek, John R. Weeks, M.   Saad Gadalla, and Allan G. Hill.  2001.  Revealing the 

Anatomy of Cities Through Spectral Mixture Analysis of Multispectral Satellite 

Imagery: A Case Study of the Greater Cairo Region, Egypt.  Geocarto International 

16 (4): 7-18. 

Rashed, T., Weeks, J.R., Stow, D., & Fugate, D.  2005. Measuring Temporal Compositions 

of Urban Morphology Through Spectral Mixture Analysis: Toward a Soft Approach 

to Change Analysis in Crowded Cities.  International Journal of Remote Sensing 26 

(4): 699-718.  

Ridd, M. K. 1995.  Exploring a V-I-S (vegetation-impervious Surface-soil) Model for Urban 

Ecosystem Analysis Through Remote Sensing: Comparative Anatomy for Cities. 

International Journal of Remote Sensing 16 (12): 2165-2185.  

Tatem, A. J., & Hay, S. I.  2004.  Measuring Urbanization Pattern and Extent for Malaria 

Research: A Review of Remote Sensing Approaches.  Journal of Urban Health: 

Bulletin of the New York Academy of Medicine 81 (3): 363-376.  

Tsai, Y.H., Stow, D., & Weeks, J.R.  2011.  Comparison of Object-Based Image Analysis 

Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal 

QuickBird Satellite Imagery.  Remote Sensing 3 (12): 2707-2726.  

Stoler, J., Weeks, J.R., Getis, A., & Hill, A.G.  2009. Distance Threshold for the Effect of 

Urban Agriculture on Elevated Self-reported Malaria Prevalence in Accra, Ghana. 

American Journal of Tropical Medicine & Hygiene 80:547-554 PMCID: 

PMC2714825. 



 

 

53 

Stoler, J., Gunther, F., Weeks, J.R., Appiah Otoo, R., Ampofo, J.A., Hill, A.G.  2011. When 

urban taps run dry: Sachet water consumption and health effects in low income 

neighborhoods of Accra, Ghana.  Health and Place 18 (2012): 250-262.  

Stoler, J., Daniels, D., Weeks, J.R., Stow, D., Coulter, L., & Finch, B.  2012.  Assessing the 

Utility of Satellite Imagery with Differing Spatial Resolutions for Deriving Proxy 

Measures of Slum Presence in Accra, Ghana.  GIScience & Remote Sensing 49 (1): 

31-52.  

Stow, D., Lopez, A., Lippitt, C., Hinton, S., & Weeks, J.R.  2007.  Object-based 

Classification of Residential Land Use Within Accra, Ghana Based on QuickBird 

Satellite Data.  International Journal of Remote Sensing 28 (22): 5167-5173.  

Stow, D. A., Lippitt, C. D., & Weeks, J. R.  2010.  Geographic Object-based Delineation of 

Neighborhoods of Accra, Ghana Using QuickBird Satellite Imagery.  

Photogrammetric Engineering and Remote Sensing 76 (8): 907-914. 

Stow, D., Weeks, J.R., Toure, S., Lippitt, C., Coulter, L., Ashcroft, E.  (Forthcoming).  Urban 

vegetation cover and change in Accra, Ghana: Connection to quality of life. 

Professional Geographer. 

Sverdlik, A.  2011.  Ill-health and poverty: a literature review on health in informal 

settlements. Environment and Urbanization  23: 123. 

United Nations Human Settlements Programme (UNHSP), 2003. The Challenge of Slums: 

Global Report on Human Settlements. Earthscan, London, UK. 

Unsalan, C. and Boyer, K.L.  2004. Classifying land development in high resolution 

panchromatic satellite images using straight-line statistics.  IEEE Transactions on 

GeoScience and Remote Sensing 42: 907-919.   

Wang, L. and Liu, J.  1999. Texture classification using multiresolution Markov random field 

models. Pattern Recognition Letters 20:171-182. 

Weeks, J.R. 2003.  "Using Remote Sensing and Geographic Information Systems to Identify 

the Underlying Properties of Urban Environments" in Champion, T., & Hugo, G., 

New Forms of Urbanization: Beyond the Urban-Rural Dichotomy. Aldershot, UK. 

Ashgate Publishing Co., 2003. 

Weeks, J.R., Hill, A.G., Getis, A., Stow, D.  2006.  Ethnic Residential Patterns As Predictors 

of Intra-Urban Child Mortality Inequality in Accra, Ghana.  Urban Geography 27 (6): 

526-548.  

Weeks, John R. 2010. "Defining Urban Areas." in T. Rashed and C. Jurgens, Remote Sensing 

of Urban and Suburban Areas. Remote Sensing and Digital Image Processing 10, 

Springer Science Business Media B.V. 2010 

Weeks, J.R., Hill, A., Stow, D., Getis, A., & Fugate, D.  2007.  Can We Spot a Neighborhood 

from the Air? Defining Neighborhood Structure in Accra, Ghana.  GeoJournal 69 (1-

2)  

Weeks, J., Getis, A., Stow, D., Hill, A., Rain, D., Engstrom, R., Stoler, J., Lippitt, C., 

Jankowska, M., & Lopez, A.  2012.  Connecting the dots between health, poverty and 

place in Accra, Ghana.  Ann. Assoc. Am. Geogr. 



 

 

54 

Weeks, J., Hill, A., Stoler, J., Zvoleff, A.  Forthcoming.  

_______________________________________ 

Weiss, L., Ompad, D., Galea, S., & Vlahov, D.  2007.  Defining Neighborhood Boundaries 

for Urban Areas.  American Journal of Preventative Medicine, 2007: 154-159. 

 

 

 

 



 

 

55 

 



 

 

56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 1 

DISTRIBUTION OF ROOF TYPES IN THE AMA 

 

 



 

 

57 

 

Appendix 1. Distribution of roof materials for both corrugated metal roofs (top) and 

slate roofs (bottom).  Households with primarily slate roofs tend to be located in the 

older slum regions surrounding Nima, whereas corrugated metal roofs tend to 

dominate the lower-lying coastal regions of the AMA.   
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APPENDIX 2 

SURVEY VARIABLE CHANGES BY EA
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Proportional Decrease in Survey Data by EA (2003-2010)      

Variable 504031 504036 505050 603005 Mean EA Δ      

Δ Electricity 0.056 -0.097 0.182 0.050 0.018      

Δ Charcoal Use 0.114 -0.094 -0.111 0.020 0.026      

Δ Eviction Possibility 0.200 0.057 0.222 0.118 0.224      

Δ Bednet Use 1.000 0.910 0.791 0.927 0.831      

Δ Possessions Index 0.097 0.112 0.242 0.238 0.178      

Δ Trash Disposal                

    Collected -0.870 -0.427 -0.734 -0.550 -0.543      

    Dumped Offsite 0.870 0.427 0.734 0.520 0.518      

    Burned or Buried 0.000 0.000 0.000 0.000 0.021      

Δ Water Source                

    Piped -1.067 -0.370 0.250 0.227 -0.568      

    Piped (inside) -0.333 -0.111 0.042 -0.023 -0.196      

    Piped (outside) -0.733 -0.259 0.208 0.250 -0.372      

    Sachet Use 0.867 0.630 0.000 0.318 0.412      

Δ Toilet Facility                

    Flushing -0.100 -0.183 0.195 0.000 -0.029      

    KVIP 0.245 -0.125 -0.333 -0.377 -0.339      

    Flush or KVIP 0.144 -0.308 -0.139 -0.377 -0.368      

Δ Ethnicity (%)                

    Akan -0.036 -0.019 0.051 0.092 -0.016      

    Ga -0.089 0.180 -0.006 -0.002 -0.001      

    Ewe 0.051 0.004 -0.057 -0.003 -0.014      

    Mole-Dagbani -0.011 -0.042 -0.036 0.005 -0.033      

Δ Religion (%)                

    Christian 0.000 -0.088 -0.088 0.031 -0.050      

    Muslim 0.020 0.111 0.047 -0.026 0.055      

Δ Migrants (%) 0.583 0.533 0.443 0.459 0.413      
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Variable Mean EA Δ 

Δ Electricity 0.018 

Δ Charcoal Use 0.026 

Δ Eviction Possibility 0.224 

Δ Bednet Use 0.831 

Δ Possessions Index 0.178 

Δ Trash Disposal   

    Collected -0.543 

    Dumped Offsite 0.518 

    Burned or Buried 0.021 

Δ Water Source   

    Piped -0.568 

    Piped (inside) -0.196 

    Piped (outside) -0.372 

    Sachet Use 0.412 

Δ Toilet Facility   

    Flushing -0.029 

    KVIP -0.339 

    Flush or KVIP -0.368 

Δ Ethnicity (%)   

    Akan -0.016 

    Ga -0.001 

    Ewe -0.014 

    Mole-Dagbani -0.033 

Δ Religion (%)   

    Christian -0.050 

    Muslim 0.055 

Δ Migrants (%) 0.413 
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APPENDIX 3 

R PROGRAM OF LACUNARITY CODE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

 

################################################################### 
# Lacunarity.R 
#   By Milo Vejraska & Alex Zvoleff 
# 
#   Computes lacunarity for a 3 band image 
#   - Input image must be separated into 3 bands. This script runs  
#     lacunarity for bands 4, 3 & 2 or a multispectral or  
#     pan-sharpened image.  
#   -  
# 
################################################################### 
 
library(rgdal) 
library(raster) 
library(nnet) 
library(snow) 
library(ggplot2) 
 
#set working directory 
setwd(c("G:/Ghana/Imagery/lacunarity")) 
getwd() 
dir() 
 
# Open raster bands 
band4 <- raster("qb02psms_unreg_band4.tif") 
band3 <- raster("qb02psms_unreg_band4.tif") 
band2 <- raster("qb02psms_unreg_band4.tif") 
 
# image(band4) 
# image(band3) 
# image(band2) 
 
 
# Calculate 3x3 focal min & max for each band 
band4min <- focal(band4, w=3, fun=min, na.rm=TRUE) 
band3min <- focal(band4, w=3, fun=min, na.rm=TRUE) 
band2min <- focal(band4, w=3, fun=min, na.rm=TRUE) 
 
band4max <- focal(band4, w=3, fun=max, na.rm=TRUE) 
band3max <- focal(band4, w=3, fun=max, na.rm=TRUE) 
band2max <- focal(band4, w=3, fun=max, na.rm=TRUE) 
 
# Calculate pixel relative heights 
rhband4 <- band4max - band4min - 1 
rhband3 <- band3max - band3min - 1 
rhband2 <- band2max - band2min - 1 
 
# Layerstack relative height bands 
rhstack <- stack(rhband4, rhband3, rhband2) 
 
# Compute pixel mass 
mass <- sum(rhstack) 
# writeRaster(mass, "qb02ms_mass.tif") 
# mass <- raster("qb02ms_mass.tif") 
image(mass) 
 
 
# Create lookup table. 
lut_vals <- unique(mass) 
lut <- matrix(c(lut_vals, rep(0, length(lut_vals))), ncol=2) 
 
# Process over blocks (rather than rows) to save processing time. 
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pb <- txtProgressBar(style=3) 
bs <- blockSize(mass) 
for (block_num in 1:bs$n) { 
 setTxtProgressBar(pb, block_num/bs$n) 
 this_block <- getValues(mass, row=bs$row[block_num], nrows=bs$nrows[block_num]) 
 lut_pos <- match(this_block, lut[,1]) 
 for (i in 1:length(lut_pos)) { 
  lut[lut_pos[i],2] <- lut[lut_pos[i],2] + 1 
 } 
} 
 
close(pb) 
 
# Replace values with occurrences 
nboxes <- nrow(mass) * ncol(mass) 
lut[,2] <- lut[,2]/nboxes 
 
# Create qmr raster 
out <- writeStart(raster(mass), "qb10ms_qmr_test.tif") 
pb <- txtProgressBar(style=3) 
bs <- blockSize(mass) 
for (block_num in 1:bs$n) { 
 setTxtProgressBar(pb, block_num/bs$n) 
 this_block <- getValues(mass, row=bs$row[block_num], nrows=bs$nrows[block_num]) 
 # Define Q(M,r) probability function  
 lut_pos <- match(this_block, lut[,1]) 
 this_block <- lut[,2][lut_pos] 
 qmr <- this_block 
 writeValues(out, qmr, bs$row[block_num]) 
} 
 
out <- writeStop(out) 
close(pb) 
 
# Square mass image  (M2) 
m2 <- mass * mass 
 
# Compute M2 x Q(M,r) 
m2qmr <- m2 * qmr 
 
# Compute M x Q(M,r)  
mqmr <- mass * qmr 
 
# Mean sq deviation of mass distribution fluctuations 
num <- m2 + qmr 
 
# Square mean of mass dist flucts 
denom <- (mass + qmr) + (mass + qmr) 
 
# Compute lacunarity 
lac <- num/denom 
writeRaster(lac, "qb10_lacunarity.tif") 
 
 
######################################################################## 
# END SCRIPT........ 
######################################################################## 


