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ABSTRACT OF THE THESIS

Satellite Image Metrics as Indicators of Socioeconomic and
Demographic Characteristics in Slum Neighborhoods of
Accra, Ghana
by
Milo J. Vejraska
Master of Science in Geography with a Concentration in
Geographic Information Science
San Diego State University, 2013

This study explored the connection between remotely sensed imagery and ground-
based housing and welfare survey data in slum neighborhoods in Accra, Ghana. Specific
household-level variables reflective of housing quality and demographics from the 2009-
2010 Housing and Welfare Study (HAWS) of Accra and the 2003 UN-Habitat Accra Slum
Survey (AccraSS) were regressed against measures extracted from high spatial resolution
Quickbird satellite imagery captured in 2002 and again in 2010. Samples from the two
surveys for 37 census enumeration areas (EAs) within the Accra Metropolitan Area (AMA)
were analyzed. An exhaustive regression analysis was run to measure the covariation
between individual survey data variables and metrics derived from the imagery. A spatial
regimes approach explored spatially autocorrelated data in the discontinuous data set, and
these results were compared with a geographically weighted regression approach. The goal
was to establish “proxy” variables from satellite remote sensing data that are indicative of
household health and welfare characteristics over time by combining spatially homogenous
predictors in multivariate regression models. By generating proxies of the built environment,
we may be able to infer or extrapolate socioeconomic and health statuses for each respective
EA and the surrounding neighborhoods at other dates (e.g., between surveys and censuses).
Specifically, 1 test the hypotheses that (1) socioeconomic and demographic characteristics of
slum areas can be inferred from spatial variations in vegetation and texture as derived from
satellite imagery; and (2) dynamics of socioeconomic and demographic characteristics can be
quantified from changes in the image metrics. Since one in six residents of the world is
estimated by the UN to be living in a slum, it is important to understand how these
neighborhoods might transform over time as the population of a major city in a developing
nation increases at a high rate.
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CHAPTER 1

INTRODUCTION

Ghana is currently undergoing a massive rural-to-urban transition, and its capital city
of Accra has been a major receiving area for migrants from other parts of the country.
Census data over the past 30 years show that the Greater Accra region has experienced high
population growth rates, mainly due to a bourgeoning youth population in rural areas that
exceeds the ability of those areas to create jobs. According to the latest provisional data from
the Ghanaian 2010 census, the Greater Accra Region now has a population of 4.4 million,
accounting for 18 percent of Ghana’s total population. The Accra Metropolitan Area (AMA)
is estimated in 2009 to have approximately 2.3 million of these people residing within its
boundaries, with 58% of the population living in neighborhoods classified as slums (UN
Habitat 2009). UN-Habitat defines slums based on their limited access to safe water,
sanitation and sewage infrastructure, the poorer structural quality of housing, higher number
of residents per housing unit, and more limited ownership for housing tenure (United
Nations Human Settlements Programme 2003). Rural areas surrounding the capital city of
Accra, along with the city’s metropolitan center, have also experienced very rapid
urbanization since the 1980s. These areas experiencing rapid growth in population consist of
mostly informal neighborhoods with a lack of urban planning or sufficient infrastructure
(Moller-Jensen and Knudsen 2008). The people residing within these informal areas
generally belong to lower socio-economic classes. Due to the lack of access to a clean water
supply (Stoler et al.2011), poor sewage systems, and crowded housing, among many other
factors, they are at a greater health risk and susceptible to higher levels of disease contraction
and mortality (Weeks et al. 2011).

The urban environment serves as a location for the accumulation and integration of
social, economic and cultural forces over time (Moudon 1997). People living in an urban
setting act as agents of change, creating a dynamic interrelationship between the population
and environment. Urban ecosystems are dramatic manifestations of human’s impact on the

environment (Ridd 1995), and it is important to evaluate and understand the urban



environment and its relationship to social qualities of life. Like a local ecosystem, the
functions of the population of a neighborhood have a reciprocal effect on the natural and
built features. The physical properties of a neighborhood’s built environment are reflective
of the local social and spatial contexts that are influenced by the individual characteristics
and behaviors of its respective and surrounding populations (Entwisle 2007). These features
of the built environment, including a range of built infrastructure, vegetation, agriculture, and
other land cover and land use types, can be remotely sensed and proxy variables derived from
remotely sensed images may be indicative of the urban lifestyle (Weeks 2003). In order to
pragmatically examine urban morphology, however, not only should the physical
components of a city be explored, but the temporal aspect should also be accounted for.
Understanding the change over time of a place along an urban-to-rural gradient allows for an
understanding of processes of urban change that both are affected by and have an effect on
social processes and human behavior.

The goal of this study was to examine the degree of co-variability between household
level survey variables and metrics derived from high spatial resolution satellite imagery
through multivariate regression. The main objective is to derive proxy variables of housing
and welfare attributes from satellite, census, and health survey data for Accra, Ghana. The
existing literature has demonstrated that there can be significant correlations between land
cover metrics classified from high resolution imagery and health and wealth indicators
derived from census or survey data. This study sought to explore how different texture
measures, spectral band indices, and land cover metrics could be exploited to provide a
quintessential component in classifying the variation in demographics and socioeconomic
status within a slum neighborhood. It is important to find which image metrics best identify
differences in health and wealth indices.

A secondary objective of this study is to evaluate the robustness of the regression
models over time, comparing the correlations between the changes in imagery and household
variables from 2002/2003 to 2009/2010. Understanding the significance and degree of co-
variability between land cover change and quality of life is an integral step in modeling the
urban gradient of developing cities in Sub-Saharan Africa. The specific research questions

that stemmed from the objectives were as follows:
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1. How well can socioeconomic and demographic characteristics within slum areas be
quantified through variations in vegetation and textural indices derived from high

spatial resolution satellite imagery?

2. How well can changes in socioeconomic and demographic characteristics over time
be characterized through changes in metrics derived from high spatial resolution

satellite image data?

3. Avre statistical correlations computed from both global and localized linear

regression models sufficiently high to enable their use as proxies for slum conditions?



CHAPTER 2

BACKGROUND

2.1 Applications of Remotely Sensed Imagery

The benefits of the application of remotely sensed imagery to complement research in
the public health sector have been widely examined (Kelly et al. 2011) and such imagery is
being integrated into many studies due to its ability to provide measures of factors within the
human environment that affect the health of a population. For example, remote sensing
products based on the normalized difference vegetation index (NDVI) and object-based
image analysis (OBIA) were demonstrated in Kelly et al. (2011) to assess locations,
quantities and extents of vegetation, agriculture, water resources, infrastructure, and other
land use, along with the temporal scales of change across these components of the human
landscape. Image texture has also been demonstrated to be useful in the processing of high-
resolution imagery. Image texture can be defined as the spatial arrangement of the gray
levels of pixels in a specific window (Herold, Liu & Clarke 2003; Bharati, Liu & MacGregor
2004), or more specifically “a spatial relationship between intensity values of neighboring
pixels, repeated over an area larger than the size of the relation” (Raghu et. al. 1995).
Statistical measures are most commonly used to characterize the spatial variability of pixel
gray levels within an image (Wang & Liu 1999). Specifically, second-order statistics such as
measures derived from Gray Level Co-Occurrence Matrices (GLCMs) have assisted in
differentiating gaps between land cover types, densely-settled urban areas, and vegetation
(Jensen 1996; Herold, Liu & Clarke 2003; Kelly et al. 2011). Whereas first-order statistics
are based upon simple statistical measures of gray level variability without being related to a
pixel’s context, second-order statistics describe the relationship of a pixel to its neighbors
within a defined region (Raghu et al 1995). Local properties or statistics that repeat over the
defined region are referred to as texture elements (Arivazhagan & Ganesan 2003). Satellite
imagery has been used in Accra to identify areas of health risk from low elevations prone to

flooding (Rain et al. 2011) and in Kenya and elsewhere in Sub-Saharan Africa to create



distance thresholds for areas at risk of the vector born disease of malaria (Hay et al. 2001;
Tatem & Hay 2004) (Stoler, Weeks, Getis, and Hill 2009).

2.2 The VIS Model & Spectral Classifications

When incorporating imagery into a study, it may be useful to classify land use in
order to identify how land is being used by its inhabitants. Ridd (1995) explored the
application of a V-1-S model for the analysis and characterization of land cover and land use
within urban ecosystems in a study in Salt Lake City, UT. Combinations of vegetation (V),
impervious surface (I) and bare soil (S) are considered to be the fundamental components of
the urban environment. The V-I-S model was proposed in order to build a conceptual
framework for inter-urban ecosystem comparison both spatially and temporally, and has been
expanded upon since (Phinn et al. 2002; Rashed et al. 2003; Rashed et al. 2005). V-I-S
analysis classifies each pixel within an image as either vegetation, impervious surface, or
bare soil through either a hard or soft classification method, depending on the heterogeneity
and spatial resolution of an image. Hard classification logic produces a map that consists of
discrete categories, whereas fuzzy set (soft) classification logic considers image
heterogeneity as a reality, producing a thematic output in which each pixel contains
membership probabilities for m number of categories (Jensen 2005). Pixels composed of a
homogeneous land cover type are considered “pure” pixels and can be identified through
hard classification methods based upon the selection of spectral endmembers (pixels with
uniform land cover). Pixels that are not comprised of a homogenous land cover type can be
specified as either V, I, or S using a fuzzy classifier. Pixels are then aggregated into spatial
eco-units from which land use in derived. The detection and monitoring of urban
morphology can also be monitored through V-1-S modeling, by means of which issues of
land use and land cover change are being explored for the city of Accra, Ghana (Stow et al.
2007; Stow et al. forthcoming).

A major criticism of the V-1-S model has been the issue of classifying mixed pixels in
the urban scene, thought to be mostly driven by improper combinations of spatial and
spectral resolution. Pixels may contain high proportions of all three endmembers, and are
therefore considered mixed elements (Rashed et al. 2003). If an urban scene is treated as a

continuous model, where these mixed pixels are treated as the sum of the spectral



interactions between land cover types within a single pixel instead of discrete elements,
spectral mixture analysis (SMA) can estimate the component parts of mixed pixels by
predicting the proportion of a pixel that belongs to a particular class or feature based on the
discrete spectral characteristics of its endmembers. SMA is a type of fuzzy classification
and is considered a “soft” classification method (Rashed et al. 2001; Weeks 2003). Rashed et
al. (2003) applied SMA to an urban scene of Los Angeles County and provided an improved
measure of the elements of land cover and land use that adequately characterized the urban
environment. Also, the value of using spectral mixture analysis to monitor temporal
compositions in urban land cover change was demonstrated in Cairo (Rashed et al. 2005).
By using the components of V-I-S plus shade (to capture pixels in the shade of tall buildings)
at two different dates, multiple endmember fraction images were subtracted from one
another, revealing the direction (increase or decrease), magnitude, and categories of change
in land cover, demonstrating in Greater Cairo V-I-S changes cascading out from the urban

center to the peri-urban fringe regions of the city.

2.3 Connecting Land Cover & Socioeconomic Data

Weeks et al. (2007) classified high spatial resolution Quickbird satellite multispectral
imagery using the V-I-S model to characterize land use in neighborhoods within the Accra
Metropolitan Area (AMA). By quantifying the proportional abundance of each of land cover
surface material, different land use categories were distinguished and then were statistically
correlated to a Census-derived slum index for neighborhoods. Factors used to create the
index are based on the operational definition provided by UN Habitat. Neighborhoods
categorized as “slums” were hypothesized to contain a combination of impervious surfaces
and bare soil, both indicative of residential areas in sub-Saharan African developing cities,
but relatively low levels of vegetative cover relative to other residential areas. GLCM
texture measures were also included in the analysis of the imagery, where slum areas with
very dense settlements and little variability in building materials between residences could be
further distinguished. Slums were shown to be associated with less vegetation and less
variability in land cover, supported by an R? value showing that 38% of the variability from
one neighborhood to another in the slum index was explained by the proportional abundance

of vegetation. The proportional abundance of bare soil also accounted for a great deal of
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variability, where neighborhoods composed of lesser amounts of bare soil tended to be those
with higher proportions of crowded housing structures.

A recent study explored whether or not variations in the urban landscape of Accra
depicted by image classification of satellite image data relate to variability in health and
wealth indicators (Engstrom et al. 2011). The authors used a combination of Landsat and
high resolution imagery to extract measures of vegetation and impervious surface from the
V-1-S model using decision trees. Inputs to the decision trees included original bands, band
ratios, vegetation indices, and grey level co-occurrence (GLCM) texture measures. The
study was performed on two scales of analysis; first, at the census tract enumeration area
(EA) level, and second, at the neighborhood level, where EAs were aggregated based on
local vernacular knowledge of where neighborhood boundaries occurred. Regression results
yielded moderate relationships between the percent built-up area per neighborhood with both
female education levels and population density, with R? values of 0.39 and 0.58,
respectively. As the percentage of built-up area within an agglomerated neighborhood
increased, the proportion of women with at least a secondary education decreased. The
inverse relationship between these two variables was suggested to be a response to the
implication of having a dual income household allowing a family to acquire a single-family
dwelling and attain a higher socio-economic status. Conversely, a positive relationship was
discovered between population density and built-up area proportions by neighborhoods, as
one would normally assume an increase in urban building density to be a response to an
increasing population. Percent vegetation cover was also negatively correlated with the use
of charcoal as a cooking fuel (R? = 0.65). This can be explained by the fact that charcoal is
the cheapest source of fuel and is used mostly by those people with a lower socioeconomic
status (Engstrom et al. 2011).

Proportions of vegetation per unit area have also proven to be useful in the
application of classifying land use and in delineating neighborhood boundaries through the
use of object based approaches in Accra, Ghana (Stow et al. 2007; Stow, Lippitt & Weeks,
2010). In analyzing the changes between high spatial resolution imagery from 2002 and
2010, Stow et al. (forthcoming) found strong correlations between housing quality and socio-
economic variables. Proportions of vegetation were derived using a simple threshold-based

classification of normalized difference vegetation index (NDVI) values in order to examine



the statistical relationships between vegetation cover and a census-derived housing quality
index (HQI) at the neighborhood level. Ordinary least squares regression found a very
significant degree of spatial covariation between the HQI and vegetation abundance, with an
R? =0.73 and 0.76 for 2002 and 2010, respectively. Also, high socio-economic status
neighborhoods tended to have the highest proportions of landscaped vegetation, while low
socio-economic areas and “slums” exhibited the lowest amounts of vegetative cover. In
addition, low socio-economic neighborhoods showed the greatest relative decrease in
abundance during the eight-year period, analogous to the increase in building density for
these neighborhoods. To complement the fluctuations of vegetation proportions, changes in
building density were shown by Tsai et al. (2011) to be correlated to socio-economic status in
Accra, but to a lesser extent. A statistically significant inverse relationship between new
building density and housing quality index was determined at the neighborhood level,
yielding an R? = 0.31, where the delineations of new buildings in the Accra Metropolitan
Area (AMA) tended to be located in lower socio-economic neighborhoods.

Herold, Liu & Clarke (2003) applied spatial metric techniques and image texture
calculations in an urban environment (Goleta and Santa Barbara, California) to explore the
link between structures, land cover heterogeneity, and dynamic changes in urban land uses.
Evaluating the quantitative descriptors of spatial urban organization allowed for the
discovery of relationships between the physical and spectral properties of objects and the
socio-economic, demographic, and ecological characteristics of individual based land cover
objects. Again, vegetation metrics had the highest contribution for best average separability
between land cover objects, and therefore was what a majority of the classification was based
upon.

Differences between formal and informal neighborhoods in cites of developing
countries were exploited with a grey level co-occurrence matrix, various texture measures
and spectral band ratios by Grasser et al. (forthcoming), which provided multiple
explorations into methods of neighborhood classification and characterization. Informal
neighborhoods are defined as unplanned and unauthorized housing settlements located in
hazardous areas of urban agglomerations with inadequate infrastructure and low availability
of services, and distinctly contrast with formal settlements and structures in high resolution

imagery. Lacunarity, a texture metric that represents the spatial distribution of gap sizes



between pixels of similar brightness values, was also an integral element in characterizing
neighborhoods where building density is generally higher (Grasser et al. forthcoming).
Lacunarity measures the deviation of a spatial structure in an image from translational
symmetry, where objects that have high lacunarity are heterogeneous to the surrounding
pixels and therefore are said to have a higher “gappiness” of geometric structure (Myint &
Lam 2005). Lacunarity classification metrics have been demonstrated to enhance the
accuracy of texture measurements beyond the capability of GLCMs (Dong 2000) and also
can assist in yielding more accurate textural classifications of land cover and land use in an
urban region using very high spatial resolution imagery (Myint, Mesev & Lam 2006).

The identification and distribution of linear features in urban environments through a
textural analysis can also contribute to a more accurate image classification (Graesser et al.
forthcoming, Unsalan & Boyer 2004). Thresholding the responses of various convolution
filters can extract the characteristics of linear features that are a unique characteristic of
anthropogenic structures and have been shown to indicate structural differences between

neighborhoods of different socioeconomic status (Graesser et al. forthcoming).
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CHAPTER 3

DATA & METHODS

3.1 Study Site & Survey Data

The research draws upon data collected in the 2003 UN-Habitat Accra Slum Survey
(Accra SS), a supplement to the 2003 Ghana Demographic and Health Survey (DHS), which
interviewed women in 37 randomly selected enumeration areas (EAS) that met specific
criteria that categorized them as slum neighborhoods. The UN-Habitat operationally defines
slums as neighborhoods that include some or all following characteristics: (1) inadequate
access to clean, potable water, (2) inadequate access to improved sanitation and sewage
infrastructure, (3) poor structural durability of housing, (4) overcrowding within housing
structures, (5) insecure housing tenure (United Nations Human Settlements Programme
2003). EA boundaries were designed and delineated to encompass approximately 1,000
persons and are the Ghana Statistical Survey’s (GSS) equivalent to a US Census Block
Group. EAs are generally too small in area and population to be recognized as
neighborhoods, but GSS has aggregated them to form larger administratively defined units
known as localities, containing approximately 40 EAs each. The survey consisted of
questions regarding the availability of basic household infrastructure, such as sewerage and
water facilities, the presence of household possessions that might be reflective of a
household’s socioeconomic status, various demographic characteristics of the residents
currently residing in the household, and also contained questions pertaining to a variety of
health measures for both women and children in the household.

The second dataset consists of primary data collected in 2009-2010 as part of the
Housing and Welfare Study (HAWS) of Accra. The HAWS survey is a representative
household survey conducted by the Harvard School of Public Health and University of
Ghana with assistance from San Diego State University. The sampling frame for the HAWS
was designed to replicate the 2003 UN-Habitat study slum selections, consisting of

household surveys collected within the same 37 EAs to form a comparable dataset. The
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Accra Metropolitan Area
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Figure 1. The enumeration area (EA) boundaries for the Accra Metropolitan Area,
overlaid on a QuickBird 2010 Panchromatic image. EAs selected for the analysis are
highlighted in bright green.

HAWS collected similar data to the Accra SS, and was intended as a follow-up data set to
assess changes in the selected EAs time.

There are many housing and welfare variables within the Accra SS and HAWS that
can represent differing levels of socioeconomic status of a household. The variables that this
study focused upon (described below and listed in Table 1) were selected based on not only
their consistency between both surveys, but more importantly, their characteristic ability to
have a predictable and intuitive relationship with a household’s health and welfare of living.
The purpose of studying housing and welfare quality in Accra, Ghana is to link the
environmental components of a neighborhood to their social environment, providing a better
understanding of a population’s health. Accordingly, the selected components of the two
surveys were housing characteristics that were reflective of a household’s health and well-
being. These variables served as the dependent variables used in the regression models. A
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set of dummy variables was created for all nominal/categorical scale variables in order to
identify the presence or absence of a specific household characteristic. The proportions of
these characteristics were computed for each EA and were assigned as representative EA

values.

3.2 Survey-Derived Variables

The physical components of households selected for regression analyses against
image-derived variables included the source of drinking water, type of toilet facility, cooking
fuels used, access to electricity, and methods of waste disposal. These were specifically
chosen to represent household infrastructure. The access to and adequacy of these
characteristics are assumed to be basic household services — the presence of which would
significantly improve the housing quality, health, and welfare of household residents.

From more demographic and cultural standpoints, housing tenure, migration, and
ethnic and religious composition variables were selected from data collected in Accra from
the 2000 Census of Ghana due to the unavailability of these data in the Accra SS and HAWS
surveys. These are considered household demographic variables, and contribute where
physical characteristics of a household might fall short in explaining differences in housing
quality and health between slum neighborhoods. Ethnic residential patterns have been used
as predictors of intra-urban health in Accra to show that cultural beliefs and social structures
of specific ethnic groups have an effect on the levels of child mortality within neighborhoods
(Weeks 2006). Therefore, the assumption was that ethnicity will also have an effect on the
composition of the physical environment that will be evident from the imagery. The
religious composition of an area has also been shown to affect the clustering or segregation
of cultural groups and tends to be somewhat linked with ethnicity, providing potential for
greater spatial heterogeneity. Housing tenure was used to represent the stability of a
household; if a household has a stable ownership or lease, then it is less likely that there will
be much change over time from outside sources such as other tenants, owners, or community
or government agencies. However, the scarcity of housing and jobs in Accra motivates
incoming migrants to temporarily live in the home of a relative, with whom they will live

until they can establish themselves (Weeks et al., forthcoming). This implies that the head of
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the household may not change, yet the composition of the household itself may and must be
controlled for with the migration variable. The combination and interaction of social forces

and the formation of social relationships in specific places is theorized to have the ability to

produce unique effects upon a region of interest (Massey 1994) and were considered as vital
components of the analysis.

Various indices derived from the Accra SS, 2000 Census and HAWS were also
incorporated. A possessions index, based upon the household ownership of various items
considered luxuries in slum areas, such as a refrigerator, television, or automobile,
complemented household characteristics. A slum index created by a prior study in Accra
(Weeks 2007) was rescaled to compare the variability of “slumness” between the 37 selected
slum-areas. A housing quality index (HQI) created by Weeks et al. (2012) and utilized by
Stow et al. (forthcoming) was utilized in addition to the slum index. The HQI was derived
though a principal components analysis of demographic data from the 2000 census of Accra
using dummy variables for characteristics of housing, infrastructure, and measures of
household occupant density and is hypothesized to provide comparable results to the
household utilities and configuration regression results.

Since it is important to link these household variables to the representative health of
the people residing within the selected slum neighborhoods, a body mass index (BMI) was
calculated from the height and weight measurements in the respective surveys. Since we are
interested in the portion of the population at risk to poor health, the proportion of the sample
population that are underweight (BMI < 18.5) and the proportion of people over weight (BMI
= 25+) were computed. Although the BMI is criticized for not taking into account other
factors influencing height and weight, such as body muscle, the index furnishes a good
indication of whether or not variation in more refined indexes may be explained by image

metrics.

3.3 Imagery-Derived Variables

High spatial resolution QuickBird satellite images covering Accra, Ghana were
captured in April, 2002, and January, 2010. Panchromatic and multispectral image data in

blue, green, and red and near infrared spectral bands were collected for both dates. The
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spatial resolutions of the images are 0.6 and 2.4 m, respectively, and cover a 121 km?
portion of the Accra Metropolitan Area. The scenes cover approximately 80% of the AMA
region, along with 83% of the region’s population. Both images have been georeferenced
independently to the Universal Transverse Mercator map projection by a third-party
company (i-cubed) at Digital Globe’s (QuickBird image vendor) standard processing level
(CE90 = 23 m; RMSE = 14 m). Ocean and inland waters were masked prior to image
analyses. An empirical line normalization approach was used to radiometrically normalize
the two dates of imagery (Yuan and Elvidge, 1996).

The regression analyses were conducted at the EA level due to the spatial constraints
of the data collected in the survey. Since the size of an EA is only constrained by the number
of residents within its boundaries and the AMA is known to contain neighborhoods with an
extreme range of population density, the size of an EA may vary greatly. Therefore data
based on EA units may be vulnerable to the ecological fallacy phenomenon known as the
Modifiable Area Unit Problem (MAUP) (Openshaw 1984). To somewhat counter the effect
the MAUP might have on the dataset, areas that contain large areas of non-built land cover
such as bare soil patches and water were masked out during image metric computation.
There was enough uninhabited area within EAs along the coast, lagoon shores, rivers, and
canals to where image metrics based on image brightness would be skewed from pixels that
do not correspond or relate to any data collected in the surveys. A manually digitized mask
was created that modified the boundaries of these EAs to exclude these excess non-built
areas.

Spectral and texture measures were calculated at the pixel level for each image using
ENVI, ERDAS Imagine, and ArcGIS image processing and analysis software packages.
These measures were computed for both the 2002 and 2010 scenes. All areas outside the 37
EAs for both images were masked out in order to reduce computational intensity. Image-
derived measures for EAs were calculated and extracted using the zonal statistics of pixel
values within each EA. The mean and standard deviation of each image metric was
computed for each specified zone, providing a representative average value along with a
measure of the variance of the image metrics within each EA.

The panchromatic band of the QuickBird imagery was used to generate the second-

order texture statistics from the gray level co-occurrence matrix (GLCM). A rotation-
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invariant gray level co-occurrence matrix (GLCM) similar to that used by Graesser et al.
(forthcoming) and Herold, Liu & Clarke (2003) was used in this analysis. A function is said
to have rotational invariance if the calculated values are not subject to variation when
arbitrary rotations are applied to the argument. The texture metrics computed from the
GLCM included variance, dissimilarity, entropy, contrast, correlation and homogeneity.
Kernel sizes used to calculate the GLCM were specified as 3x3 and 5x5 pixels to take
advantage of the high spatial resolution of the images. These sizes were specified in order to
capture more accurate representations of object edges, as slum neighborhoods tend to be very
densely settled. Convolution filters were applied to the panchromatic and near infrared bands
of the QuickBird imagery to capture the magnitude and directions of linear features on the
ground, which are unique characteristics of the built environment. Sobel, Roberts, Gaussian,
and directional filters were applied.

“Proxies” of building density were measured by extracting the linear feature
distributions for EAs and calculating the lacunarity of each EA. Since lacunarity is a textural
landscape measure, it can serve as a surrogate measure of the variations in building density.
Lacunarity was coded and computed using the R programming language software. Linear
features were extracted by thresholding the convolved images mentioned above to create a
binary image of straight-line features. A threshold value of 250 was applied to generate
linear features most representative of building boundaries and edges. The edges of building
boundaries were expected to contrast significantly with the surrounding unpaved roads and
pathways of the neighborhoods. More densely-built EAs were expected to have lower
lacunarity values and a more crowded and clustered linear feature distribution.

Various spectral bands and band ratios were derived and also included in the
regression analyses. Individual bands, band ratios, and indices such as the Normalized
Difference Vegetation Index (NDVI) were derived from the multispectral images and mean
values of all pixels within an EA were calculated for each spectral measure for data
consistency. Vegetation proportions per EA were calculated from a simple threshold-based
NDVI classification that was demonstrated to be highly correlated with relative housing
quality (Stow et al. forthcoming). Proportions of impervious surface per EA were derived
from a previously developed object-based vegetation-impervious surface-soil (VI1S)

classification of the AMA. Vegetation proportions were also extracted from the object-based
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VIS classification and compared to other vegetation metrics in order to find the most suitable
vegetation predictors. A principal components analysis (PCA) was also performed on both
dates of multispectral images to generate spectral transform measures that tend to relate to
brightness/albedo and relative image greenness. This technique uses an orthogonal
transformation to convert a set of spectral bands containing groups of possibly correlated
brightness values (pixels) into a set of values of linearly uncorrelated spectral variables
called principal components. A PCA allows for the definition of a minimal set of non-
redundant channels (components), proper for discrimination studies in image processing
(Ceballos & Bottino 1997). There were a total of three principal components included in the
analysis: 1) first principal component (PC1), representing a spectral transform image
representative of image brightness, albedo, and reflectiveness; 2) second principal
component (PC2), from which the transform extracted information on vegetation brightness
through the identification and discrimination of spectral vegetation reflectance, primarily
contained within the Green, Red, and Near-Infrared bands; and 3) third principal component
(PC3), which identified regions of homogeneous spectral values in the form of densely-built
housing structures.

To serve as additional predictors, binary classifications of vegetation and impervious
surface were analyzed in Fragstats, a spatial pattern analysis program designed to compute a
wide variety of landscape metrics for categorical map patterns. Patch richness and patch
density landscape metrics were generated using the binary classification products. Stow,
Lippitt & Weeks (2010) demonstrated that mean vegetation patch size and the proportion of
vegetation patches per EA are valuable in the delineation of neighborhood boundaries in
Accra, and therefore were explored to see whether they had a significant impact on the
responses of survey variables within EAs. All aforementioned imagery-derived metrics

(IMs) will serve as independent or predictor variable inputs in the regression analysis.


https://en.wikipedia.org/wiki/Orthogonal_matrix
https://en.wikipedia.org/wiki/Orthogonal_matrix
https://en.wikipedia.org/wiki/Correlation_and_dependence
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Regression Model Inputs

Image Metrics Survey Variables

Spectral Metrics

Texture Measures

Slum Survey Data

2000 Census Data

Bands, Ratios, Veg Indices  |GLCM (3x3, 5x5) Infrastructure Socioeconomic
Blue Mean Electricity Ethnicity
Green Variance Cooking Fuel Migration
Red Homogeneity Disposal of Waste Religion
Near Infrared (NIR) Contrast Drinking Water Supply Indices
NDVI Dissimilarity Type of Toilet Housing Quality (HQI)
NIR/Red Entropy Socioeconomic Slum Index
NIR/Blue Second Moment Housing Tenure
Red/Green Correlation Bednet Presence
Green/Blue Convolution Filters Indices

Principle Components Sobel Possessions Index
Bands 1-4 Roberts Telephone

Vegetation Binary Directional (0-90) Refrigerator

Impervious Binary Gaussian Radio

Landscape Metrics Linear Feature Density Television
Patch Density Lacunarity Automobile

Mean Patch Size

Under-5 Indices

Euclidean N-N Distance

Height-Weight

Elevation (DEM)

Weight-Age

Table 1. List of variable inputs into the exploratory regression model.

3.4 Exploratory Regression Modeling

The study was largely exploratory in nature in that there were a total of 29 different
image-derived metrics used in multiple combinations to attempt to explain 27 different
household data characteristics. The EA, or enumeration area, comparable to an American
census tract, was used as the spatial unit of analysis for both the 2003/2002 and 2009/2010
datasets. An exploratory bivariate regression was conducted using the IBM SPSS (Statistical
Package for the Social Sciences) and the spatial statistics toolset in ArcGIS software.
Pearson product-moment correlations were computed so as to explore all possible
combinations of image metrics (IMs) and survey variables (SED) for a total of 783
correlation analyses. Pearson’s r measures the strength of a correlation (linear dependence)

two variables X and Y. Itis calculated using the equation

L&-XNY-Y)

?:1(Xi - )_() ?:1(Yi - ?)

where X and Y represent the means of the two variables and the denominator can be

described as the product of the sample standard deviations for X and Y. All bivariate
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correlations that were statistically significant at the a = 0.05 level were used in exploratory
ordinary least squares (OLS) multivariate regression models in both SPSS and ArcGIS. The
OLS general model was then computed for each combination and is specified in the
following equation:

Vi = Bo+ B1x1; + &

where x; is an independent or predictor variable, y; is the dependent or response variable,
and ¢; is the error term. The S coefficients express the average change in y; for each unit
change in x;. Using this model, the independent variable inputs were metrics derived from
the imagery, where the dependent variables included each variable from the survey data sets
(see Figure 2). The version of exploratory regression that was implemented is similar to a
stepwise regression, but rather than looking for models with high R? values, it determines
which models pass specific regression diagnostics that are set as model parameters along
with the basic assumptions of an OLS model. Various thresholds for a minimum acceptable
R? value and a minimum coefficient p-value cutoff enable the exploration of various model
fits. A maximum VIF (variance inflation factor) value, quantifying the severity of
multicollinearity in the OLS regression, was set at 4 to sift out over-specified models where >
2 IMs might have been highly intercorrelated. A threshold for the minimum Jarque-Bera
(JB) statistic p-value was set to a = 0.1, testing for goodness-of-fit with respect to skewness

and kurtosis. The Jarque-Bera statistic is calculated as follows:

JB = E(52+ z K-37%)
6 4

where n is the number of observations (degrees of freedom,df), S is the sample skewness,
and K is the sample kurtosis (see Jarque & Bera 1987). In classical statistics, a statistically
significant Jarque-Bera probability would indicate the presence of a non-normal distribution
of error terms in the form of skewness, kurtosis, and heteroskedasticity. However, since this
study is trying to explore the inter-slum variability in household characteristics through
spatial regression techniques, a non-normal distribution of error terms provides a valid
indication of spatial effects. Therefore, models with significant JB probabilities will not be

discarded, but rather explored through a switch in model specification. A minimum
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acceptable p-value for Global Moran’s I was also used to explore initial spatial
autocorrelation in the residuals, another indicator of the need for a spatial model
specification.
Each model was ranked according to the model fit, measured by their respective adjusted
coefficient of determination(R?) and Aikaike Information Criterion (AIC) values. The
adjusted R? value accounts for the number of predictor variables input into the model along
with the sample size (number of EAs ) of each, and will decrease below the original R? value
if an explanatory variable is included that does not aid in the prediction of the dependent
variables. R? is calculated as

n—1

R?=1-
n—=k

(1-R?)

where R? is the proportion of total variation of the dependent variable explained by the
predictor variables, n is the sample size, and k is the number of predictor variables. The
higher the R? value, the more explanatory power the model has. The AIC, is another
goodness of fit measure and is an asymptotically unbiased estimator of the information lost
when model g is used to estimate model f (Aikaike 1973, 1974). The AIC is a function of a
model’s maximized log-likelihood (#), the number of estimable parameters (K), and a
second-order term defined by Hurvich and Tsai (1989) that accounts for the observation

sample size. AIC is represented mathematically as

AlIC, = =24 + 2K + KK+l
c n—K-—1’'

and is designed to estimate the predictive accuracy of competing model hypotheses when the

sample size is small compared to the number of parameters, as is the case with our dataset

(Posada & Buckley 2004).



20

3.5 Spatial Heterogeneity & Regime Analysis:
Searching for Structural & Spatial Instability

In the presence of spatial heterogeneity and autocorrelation within the Accra EAs, a
combined spatial error/lag and spatial regimes regression technique similar to that
demonstrated by Curtis, Voss & Long (2012) was used to account for what Anselin (1996)
referred to as “the intrinsic uniqueness of each location.” Spatial autocorrelation and
heterogeneity have the potential to affect inferences in a cross-section of spatial units, and
furthermore can result in a nonspherical error variance, nullifying standard hypothesis tests
(Anselin 1990).

Results from the exploratory regression were transferred into OpenGeoDa in order to
determine the correct spatial model selection using a series of Lagrange Multiplier (LM)
tests. One directional LM tests (LM[lag] and LM[error]) and their more robust forms
(Robust LM[lag] and Robust LM[error]) were computed for each multivariate model in order

to form a probability-based decision rule as follows:

a) if neither LM test rejected the null hypothesis ([, > 0.05), no spatial regression
was run;

b) if one of the LM tests is significant, proceed with the spatial model specified by
the respective LM test;

c) if both LM tests reject the null hypothesis, refer to the significance of the Robust
LM tests and proceed with the respective spatial model indicated by the most
significant Robust LM probability.

A spatial weights matrix was generated for the spatial regression techniques using an
inverse Euclidean distance band, assisting in the quantification of the spatial relationships
that exist between EAs. An inverse Euclidean distance band weight computes a kernel
weight that decays exponentially with increasing Euclidean (straight-line) distance between
features. Row standardization was used to account for the spatial sampling bias of the EAs.
A bandwidth of 3.6 km selected as the critical distance that ensured all EAs had at least one
neighbor. This weights matrix was used in the spatial error/lag models to identify any spatial
dependency of the values of the dependent variable on either the “neighboring” EAs (spatial
lag) or a spatial dependency revealed within the error terms (spatial error). A spatial lag
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model incorporates spatial effects by including a spatially lagged dependent variable in the

regression as an additional predictor, modifying the OLS model to

i =pWy + By + Bixy; + &

where Wy is the spatially lagged variable for the weights matrix Wand p is the spatial
coefficient. The lag model treats spatial correlation as a process or effect of interest, where
the values of y in one unit of analysis are directly influenced by the values of y in
neighboring units. Conversely, the spatial error model examines the spatial autocorrelation

between the residual error terms of adjacent areas. The error model is specified as

Vi = Bo + Bixy; + &

with & = AWEL' + {T

where A is the spatial error coefficient and ¢ is a vector of uncorrelated error terms. This
model treats spatial autocorrelation as a nuisance and disregards the idea that spatial
correlation may reflect some meaningful process and treats error as an effect of the model
misspecification of independent variables. AIC. values were calculated and used to
distinguish whether the global spatial regression was an improved model fit. A decrease in
the AIC, by at least 3 was considered to be the threshold indicative of an improved model
(Fotheringham, Brundson & Charlton 2002).

The spatial regimes approach involved regressing independent variables with the
dependent variable whose regression coefficients designated distinct “regimes” to create a
structurally stable model. Regimes were characterized by clustered ranges of coefficient
values in particular spatial units — in this case, EAs. This separated the dataset into discrete
regions made up of spatially-grouped EAs for which an OLS regression was run separately,
using the same predictors. In considering a two-regime model where the observations
composing the regimes have been considered a priori into one of the two regimes, the model

notation would be expressed as
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yi _ X 0 B L M

Yj 0 X; B ui
where i and j designate the distinct regimes. The spatial regime method allowed for the
testing of the overall model fit as well as the specific stability in the residual estimates when
the unit of analysis is theoretically, or in this case, also physically bounded (Curtis, Voss &
Long 2012). We hypothesized that if each regime was associated with a particular region of
slum neighborhoods, the spatial regimes approach would then essentially become a test for
regional homogeneity (Anselin 1990). The combination of an appropriate model
specification for a process as well as a set of carefully chosen covariates has been
demonstrated to provide enough to explain the variation in the differential values of a spatial

variable for a specific region of analysis (Anselin 1996).

3.6 Comparing Model Results to a Geographically
Weighted Regression

Spatial regression results were compared to results provided by a geographically
weighted regression (GWR) model. In a GWR model, the relationships between the unit
under observation and its neighboring spatial units are considered based upon a specified
contiguity matrix. The GWR model specification provides a local version of spatial
regression or process by fitting a model to each unit of analysis, incorporating explanatory
variables that fall within a specified bandwidth or kernel definition. Local coefficients are
estimated for each independent variable included in the regression, of which the magnitude is
indicative of the degree of contribution in explaining local variation in the dependent variable
(Fotheringham, Brundson & Charlton 2002). The GWR model is specified as

yi = p(uv )Wy + B, (wv;) + Br(uivi)xy; + & (uv;)

where a unique set of parameters is computed for each observation i at a set of geographic
coordinates (u;v;). Due to the lack of a completely contiguous dataset and for the ease of
comparison with the global models, the areas in between EAs in this case were considered
empty space. Therefore, neighbors will be determined in this case by the bandwidth
specified by the spatial error/lag regression previously described. Comparing global spatial

model results to a local GWR model was hypothesized to provide an additional measure of
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the robustness of the results. Clustering of residuals was evaluated at the local level using

local Moran’s 1.

3.7 Evaluating Temporal Robustness using the
Bootstrapping procedure

After the best statistically significant multivariate correlations were established
between imagery metrics and household variables, the robustness of the regression models
was evaluated. The same modeling procedures run for the 2000-2003 data (t,,,,) Were used
to build multivariate models for t,,,, and At. When comparable passing models were
constructed, a bootstrapping procedure elucidated by Efron (1979) was utilized to create a
distribution of R? values for the t,q5 , t2010and At models in order to observe the range of
model fits for each multivariate regression. The bootstrap approach is based upon random
sampling with replacement, where specific observations may or may not be sampled multiple
times within a model. The advantage of bootstrapping is that the range of R? values may be
analyzed to test for model robustness and stability (Efron 1979). Smaller ranges in R?
values infer that models are more robust in their prediction of values and have a strong
potential to indicate socioeconomic conditions and demographic characteristics based on

metrics derived from high-resolution satellite imagery.

3.8 Investigating Change Over Time: The Search for
Proxies

The final step in the analysis of image metrics as indicators of ground survey data
was to examine how strongly correlated changes in image metrics (4/Ms) were to changes in
the socioeconomic and demographic data (4SEDs). The main goal of this component was to
investigate the “predictive” (indicative) ability of 41IMs with respect to A4SEDs, creating
proxy measures of the household environment using imagery. The same processes run for

the static analysis of the image metrics were utilized, replacing the temporally static



components with A variables in the regression. The models then followed the formula
Ay; = Bo + B1dxy; + &,
where Ay; and Ax;; would represent ASED; and AIM; , respectively. The bootstrapping

approach was applied to reveal the most robust multivariate models, indicating which A7Ms

had the highest potential for use as proxy measures of ground data.
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data.
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CHAPTER 4

RESULTS

Given that the study was conducted primarily in an exploratory manner, the results
presented here will focus largely upon the models that provided the strongest and most
significant results. These results will be discussed in a stepwise method, following the

methodological modeling procedures outlined in the prior sections.

4.1 Exploratory Bivariate Regression Analysis and
OLS Modeling

The exploratory bivariate correlations indicated that there are a large variety of image
metrics that are able to explain proportions of the variance in demographic and housing
quality variables. Table 2 presents the results from the multivariate models formulated
through the exploratory combinatory multivariate analysis for the 2002 image. All models
for each temporal segment were examined for multicollinearity through the comparison of
VIFs (variance inflation values) and condition numbers (CN). Models with any existing
multicollinearity between two or more independent variables were discarded. The Breusch-
Pagan and Jarque-Bera tests were performed to explore whether each selected model
contained residuals with a non-normal distribution or any evidence of heteroskedasticity,

indicators of the need for spatial model specifications.

4.1.1 2002 MODELS

Eleven of 19 2002 OLS multivariate models were able to explain over 20% of the
variance in their respective survey variables using 14 different image metrics as the
predictors. All 19 models were significant at the confidence level of o = 0.05 with all
predictor variables meeting the same a-level. The disposal of trash through collection (R?=
0.78) and local offsite dumping (R? = 0.76) had the highest correlations. Over 75% of the
variance in trash disposal methods can be accounted for using mean values of three metrics —

a) first principal component (PC 1) of the 2002 multispectral image, which upon visual
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interpretation is a representation of scene brightness (i.e., albedo); b) third principal
component (PC 3), a spectral proxy representation of vegetation amounts in this case; and c)
average elevation, derived from a high spatial resolution DEM (digital elevation model). The
coefficient relationships for trash disposal models suggest that EAs that mainly undergo
systematic trash collection are located within less densely settled neighborhoods with more
vegetation, containing houses constructed with less reflective rooftop building materials (e.g.
— non-metal materials) and built at relatively higher elevations. EAs containing residents that
primarily dispose of household trash in an offsite location tend to have an inverse
relationship. Traditionally, EAs situated at higher elevations belong to residents of a higher
socioeconomic status and are a few kilometers inland from the coast. These areas have
primarily been settled by the Ga ethnic group, which was historically known as a coastal
fishing culture that tends to live toward more low-lying coastal regions more at risk to
flooding and sewage runoff, putting these populations at a higher risk for disease (Rain et al.
2011)(Weeks et al. 2006).

Moderately strong correlations were found between brightness values in the Blue
band of the multispectral imagery and proportions of households in each EA whose primary
disposal of sewerage is either through a Kumasi ventilated pit latrine (KVIP; R? = 0.34) or
through a method other than a flushing toilet or a KVIP (R? = 0.38). An inverse relationship
between average Blue band brightness and the proportion of households that dispose of their
sewerage though a method other than a flushing toilet or KVIP, where if an increase in
average EA Blue band brightness values is observed, a decrease in % Toilet (KVIP) would be
expected. Other methods of sewerage disposal may include traditional pit toilets, buckets or
pans, or no formal toilet facility at all. Higher Blue band brightness in the urban slum
neighborhoods of Accra correspond to rooftops that are constructed from highly reflective
building materials like slate, most commonly observed in the coastal slum regions of Accra,
whereas less reflective building materials are more commonly found in the older, more
established inland slum regions surrounding the neighborhood of Nima (see Appendix 1),
where most roofs are made of corrugated metal that has rusted or faded over time. Almost
intuitively, an inverse relationship was observed between the proportion of households that
use KVIPs as the primary type of toilet facility and Blue band brightness. These results

provide a very good indication of a severe health risk within EAs that do not primarily use
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flushing or KVIPs for sewerage, as the stagnant decomposition of sewerage is closely related
to various communicable diseases, insects that may act as vectors of these diseases, and poor
sanitation conditions for food preparation and sleeping quarters.

Approximately 45% of the variance in the proportions of households of the Ga ethnic
group in each EA was explained using a combination of the spatial variance of pixels in the
near-infrared (NIR) band brightness values and average pixel values per EA derived from a
Laplacian-filtered panchromatic image. Both predictors were statistically significant at the a
=0.01 and o = 0.05 confidence levels. With an increase in the variance of NIR brightness
values and a decrease in the average Laplacian-filtered pixel value, more simply stated as a
decrease in building density, we would expect to observe an increase in the proportion of
households belonging to the Ga ethnicity. Promising results were also apparent in the
models for both the % of the sample population of both the Christian and Islamic populations
with R? =0.59 and R? = 0.71, respectively. The textural metric of image lacunarity was
included as a statistically significant predictor at the oo = 0.01 significance level in both OLS
models. EAs with higher average lacunarity values are considered to be regions that contain
pixels that are more heterogeneous to their respective surrounding pixels and provide a
measure of image “gappiness”, another proxy measure of building density. These results
show that with an increase in building density comes an increase in the % of households per
EA belonging to the Christian religion — the inverse standing for the % of Muslim
households per EA. This result is consistent with prior studies that have demonstrated that
EAs in Accra with higher building density are moderately correlated with lower housing
quality (Tsai et al. 2012), and neighborhoods with higher concentrations of the population
that are non-Christian are at a larger risk for high levels of child mortality (Weeks et al.
2006).

The regression results also indicated very strong correlations between various textural
transformations and the spatial distribution of religious groups (% of residents that are of the
Christian and Islamic faith, R? = 0.59 and R? = 0.71, respectively) within the specific slum
neighborhoods of Accra. Through a combination of the variance in image pixel correlation
(a component of the GLCM), and mean EA values of both lacunarity, a textural
transformation that provides additional information on building density through what is
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known as “image gappiness” (Myint & Lam 2005), and a convoluted panchromatic image
using a Sobel edge-detection filter to capture a proxy indicative of building density.

A majority of independent variables had regression coefficients that were below 0.01,
indicating that only large increases or decreases in image metric values would have
significant relationships with the variability in the changes in survey variables. Standardized
residuals for a selection of models with the strongest correlations are presented in Figure 2.
Severe over- and under-prediction of standardized residuals was rarely observed. A series of
Lagrange Multiplier (LM) tests were performed to detect the presence of spatial dependence
of spatial heterogeneity, with the results presented in Table 3. Both one-directional and
robust versions of the LM [lag] and LM [error] tests were run to test if the models were
missing a spatially lagged dependent variable or if any spatial error dependence existed. For
the 2002 series, only one model indicated the presence of spatial effects, % Muslim. A
statistically significant LM [lag] value suggested that a spatial lag model be specified to

account for the effects of neighboring EAs on the dependent variable.
4.1.2 2010 MODELS

For the 2010 series, only 11 models passed all diagnostic tests, with only six of those
11 accounting for > 20% of the variance in their respective survey variables using the image
metrics. Both the collected trash and trash burned or buried onsite models produced
evidence of heteroskedasticity and had non-normally distributed residuals, failing both the
Jarque-Bera and Breusch-Pagan significance tests. The % Ga per EA model exhibited a
moderately strong correlation as for the 2002 data, with the combination of average Red band
and Simple Ratio vegetation index (SR) brightness values explaining 48 % of the variance.
Both independent variables established positive relationships between brightness and the %
Ga per EA, confirming the inverse relationship between the proportion of Ga and the amount
of vegetation per EA established in the 2002 model. Models for the % Christian and %
Muslim per EA produced very strong results, with R? = 0.41 and R? = 0.56, respectively. A
relatively high amount of variance in both models was explained using average values from
the Green/Blue band ratio alone. The % of one room households per EA, a variable not
present in the Accra SS dataset, was included in the 2010 series of models based on the idea

that EAs with a higher proportion of one-room households are hypothesized to be built in



33

overcrowded neighborhoods with higher building density. About 21 % of the variance in the
% of one-room households was explained by the variance in EA vegetation, demonstrating
the positive relationship between vegetation amounts and densely populated EASs.

A moderately strong relationship was also produced for the model for % overweight
(BMI = 25+), with a Laplacian-filtered image (related to building density) accounting for
29% of the variance. As mean EA Laplacian values increase, we can expect to observe an
corresponding increase in both building density and the proportion of the population with
BMIs of greater than 25. A standardized g- coefficient of 1.91 for the Laplacian values
variable show that as for each 1% increase in mean Laplacian values, the percentage of
people considered overweight increase by about 2%. Both Jarque-Bera and Breusch-Pagan
tests were statistically significant (p < 0.000) and were examined under a GWR model that is
discussed later. A positive relationship between vegetation proportions and % underweight
was established, with EA vegetation proportions explaining 13% of the variance in the
distribution of the underweight population of the AMA. These results invite further
investigation into the relationship between health variables, building density, and vegetated
land cover.

Overall the indicative power of high-spatial-resolution image metrics from 2010 were
lower than those for the 2002 image metrics. This may be attributed to the densification of
settlements shown in Tsai et al (2012) and loss in vegetation proportions demonstrated in
Stow et al. (forthcoming), creating a more heterogeneous physical environment to be
observed within the slum neighborhoods. This could also be attributed to the sampling error
and uncertainty between the two studies. Only 6 of 12 survey variables from the 2009-2010
HAWS dataset that were comparable between surveys produced passing models, compared
to 11 of 12 from the 2003 Accra SS. This may indicate that even though the sampling design
and questionnaire from the HAWS was modeled directly after the Accra SS, the effects of
selection bias may be present and skewing the results.

Once again, most predictor variables had miniscule coefficient values below 0.10.
Diagnostics for spatial dependence indicated that all passing models were subject to spatial
heterogeneity. The Global Moran’s I statistics and probabilities provide no indication of

spatial autocorrelation in the dataset. However, statistically significant probabilities for the
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one-directional LM [error] and Robust LM [error] tests (displayed in Table 5) signify that

spatial heterogeneity is present in the form of heteroskedasticity.
4.1.3 AMODELS

Fourteen of 19 A models had the indicative power to explain > 20% of the variance in
the changes in survey variables between 2003-2010 using satellite image metrics, with 11 of
19 multivariate models accounting for > 30% of the variance alone. A table is presented in
Appendix 2, listing the amount of change observed in each EA included in the study. Model
results and diagnostics for residual normality and heteroskedasticity are presented in Table 6.
A total of five models had non-normal residual distributions, providing an indication of the
possible spatial effects that might be in play and suggesting further investigation of model
specification through a more localized model.

As with the 2002 models, the changes in image metrics were moderately correlated
with changes in sewerage variables, more specifically, the proportion of households that
primarily utilize KVIPs and the proportion of households whose disposal of sewerage is
through neither a flushing toilet nor a KVIP. As the % vegetated land cover and average
image brightness decrease, an increase in households that do not dispose of sewerage through
flushing toilets of KVIPs is observed (R? = 0.38). EAs with higher proportions of the
population not using either a KVIP or flushing toilet are located in the older, more
established slum regions surrounding the neighborhood of Nima, where the addition of
formal sewage infrastructure may not be possible. These slums are also very densely built
with little to no vegetation existing, supporting the results of the A model.

Change in % of households with collected trash and % of households with trash
dumped offsite reappeared on the list of models with moderately strong correlations (R? =
0.32, R? = 0.39, respectively), with change in % trash dumped offsite model including the
third principal component (PC3) as a predictor variable. Moderately strong results were
produced by the A % Christian (R? = 0.35) and A % Muslim (R? = 0.31) models once again.
The Green/Blue band ratio was included as an independent predictor, yet with less statistical
significance. The remaining predictors (second principal component, % vegetation) establish
a relationship between religious affiliation and EA vegetation proportions, not yet produced
by model results in the previous two time series datasets. The positive relationship between
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% Christian and % vegetation suggest that EAs with higher proportions of vegetated land
cover have higher proportions of the population that are Christian. This is confirmed by the
inverse relationship between A % Christian and A second principal component (PC2)
brightness values, where lower A PC2 values are representative of higher amounts of
vegetated land cover. The relationship between A % Muslim and A PC2 indicate the exact
opposite connection to EA vegetation fractions.

Figures 5-7 present three image metrics that were included as significant model predictors
that best represent the changes in the imagery between 2002-2010. There was a general
increase in values for image lacunarity (Figure 5) over the 8-year time span, reflecting the
densification of the built environment within slum neighborhoods, mostly driven by an
increase in population that demands the construction of new, informal housing structures.
The neighborhood of Sodom & Gomorah (Figure 5, outlined), along with the surrounding
Korle Lagoon area, has more recently been a focal point of incoming migrants from the more
northern regions of Ghana and surrounding countries in the Sahel region of West Africa
(Rain et al. 2011). This is demonstrated by an increase in the composition of migrants in
Sodom & Gomorah from 32% to approximately 79% of the population, a 146% increase over
the course of 10 years. Migrants in Sub-Saharan Africa have a higher health risk than the
rest of the population, as they tend to live in overcrowded neighborhoods at lower elevations
that are prone to flooding and other health hazards (Rain et al. 2011; Sverdlik 2011; UNHSP
2003). New building development and building densification was found to correlate
moderately to housing quality (Tsai et al. 2012). Therefore, it is vital to track the changes in
the composition of migrants in slum neighborhoods over time in order to monitor and
manage levels of morbidity and poor socioeconomic status.

Figure 6 displays the 2" principal component (PC2) of the multispectral images at
both dates. Lower brightness values in PC2 correspond to vegetated land cover, of which
there is a visible decrease from 2002-2010. Neighborhood levels of vegetation and other
environmental factors within slum neighborhoods have been demonstrated to be connected to
differing levels of child mortality (Jankowska et al. 2013), housing quality, and
socioeconomic status (Stow et al. 2012). The results of modeling the changes over time in
Accra, presented in Table 6, now indicate that vegetation proportions are also connected to

different demographic characteristics of the population such as the percentages of the
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EA Boundaries

0 0.125 0.25 0.5
S I e —— Kilometers

Figure 6. A comparison of the 2" principal component (PC2), derived from
QuickBird multispectral images for (a) 2002 and (b) 2010 images in the
Gbegbeyise (west of the river) and Chokor neighborhoods. Both dates revealed
that PC2 carries a large portion of spectral vegetation data and were considered

vegetation proxies.
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Figure 7. A comparison of the Blue/Green (B/G) band ratio, derived from
QuickBird multispectral images for (a) 2002 and (b) 2010 images in the
Gbegbeyise (west of the river) and Chokor neighborhoods. The B/G image
metric was a significant predictor in five of the highest performing models.

42
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population that belong to the Christian and Islamic faiths, ethnic groups like the Akan, Ga,
and Ewe, and also physical household characteristics such as trash disposal and sewage

facilities.

4.2 Estimating Indicators of SEDs through Global
Spatial Regression Modeling

The LM tests for the A models indicated that a spatial lag model should be specified
for the 4 trash dumped offsite and a spatial error model for 4 bednet use. Global Moran’s 1
was statistically insignificant in all but five models, suggesting that spatially autocorrelated
residuals may not be the number one concern within this dataset. The LM test results also do
show the need for a spatial process model specification on most occasions.

For the 2002 model series, a global spatial lag model was fit to A % Muslim, based
upon the statistically significant result from the LM[lag] test. A decrease in the AIC, value
from -44.57 to -51.74 was observed along with an increase in log-likelihood value from
26.28 to 30.87, signifying an improved model fit. This is confirmed by the coefficient of the
spatially lagged variable (p =-0.77), which is highly significant (p = 0.0007487). The
magnitude of all other estimated coefficients slightly increased from the classical OLS model
(see Table 8), indicating that a portion of explanatory power of the independent variables
originally attributed to their EA values can now be accounted for by values of the respective
independent variables in “neighboring” EAs. An increase in the statistical significance of all
predictor variables resulted from the switch in model specification, and the value of the
likelihood ratio test was also highly significant (p = 0.0025), indicating the importance of the

spatial autoregressive term.

Two spatial process models were specified in the At,y10-2002 Series — 4 trash
dumped offsite and 4 household bednet use. Both LM [lag] and LM [error] values were
statistically significant, but upon examination of the Robust LM values, the Robust LM [lag]
test had a lower probability, indicating the need for a lag model fit. Moran’s I (I1=0.15) was
also highly significant (p < 0.0000) for 4 trash dumped offsite, signaling the presence of
moderate spatial autocorrelation in the form of clustering. The spatial lag model produced a

decrease in AIC, value from 22.54 to 20.62, indicating an improved model fit, confirmed by
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Coefficient Std. Error Probability
Variable OLS Lag OLS Lag OLS Lag
Intercept -1.087 1.652 0.128 0.193 0.0000 0.0007
Dissimilarity 0.001 0.012 0.003 0.002 0.0026 0.0000
Blue band -0.004 -0.006 0.001 0.0009 0.0002 0.0000
Lacunarity -0.009 -0.012 0.002 0.0015 0.0000 0.0000

OLS - AIC, = -44.57

Spatially lagged - AIC, =-51.74
OLSR?=0.71

Likelihood Ratio 9.169

Table 8. % Muslim results for the OLS and spatial lag global models.

A Trash Dumped Offsite — Spatial Lag Model Results

Coefficient Std. Error Probability
Variable oLS Lag OoLS Lag oLS Lag
Intercept 0.660 0.353 0.716 0.119 0.000 0.003
45° Filter 0.191 0.191 0.067 0.058 0.008 0.001
- Green/Blue -0.014  -0.015 0.004 0.003 0.001 0.000
Rho p 0.595 0.205 0.003

OLS - AIC, = 22.54
Spatially lagged - AIC, = 20.62

OLS R? =0.38 Spatial lag pseudo R? = 0.52

Likelihood Ratio 3.911

Table 9. A % trash dumped offsite results for the OLS and spatial lag global models.
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the significance of the likelihood ratio test (p = 0.47). A decrease in independent variable
coefficients was observed along with a decrease in the standard error values for each
predictor, demonstrating the importance of the spatial autoregressive term in modeling the
effects of “neighboring” EAs on the variability in the % of households that dump household
trash offsite. Lambda was highly significant with a value of p = 0.595.

A spatial error model was fit to 4 bednet use, providing mixed indications of model
fit improvement (Table 11). The AIC, value decrease from -23.67 to -25.81, but the
likelihood ratio test was not statistically significant at the oo = 0.10 level. Standard errors
increased in each predictor variable for the error model, yet the variable coefficients slightly
decreased, attributing some of their significance to the A coefficient (A = 0.489).

A dataset with a small sample size has the ability to produce a Type-II false-positive
indication of spatial autocorrelation or spatial heterogeneity within the distribution. This
may be attributed to a misrepresentation of the population through sampling bias and also has

the potential to skew model results due to having low degrees of freedom.

A Bednet Use — Spatial Error Model Results

Coefficient Std. Error Probability
Variable oLS Lag oLS Lag oLS Lag
Intercept 0.552 0.547 0.104 0.112 0.000 0.000
Sobel Threshold  -1.446  -1.450 0.516 0.521 0.009 0.005
Lambda A 0.489 0.253 0.054

OLS - AIC, = -23.67
Spatially lagged - AIC,. =-25.81

OLS R?=0.19 Spatial lag pseudo R? = 0.29
Likelihood Ratio 2.498

Table 10. A % bednet results for the OLS and spatial error global models.



AlCc Values (Assessments of Model Fit)

Dependent Variable 2002 Models A Models
oLS Lag oLS Lag

Electricity -80.58 -73.51
Charcoal Use -48.41 -32.74
Trash (collected) -15.87 22.21
Trash (dumped offsite) -14.93 24.00 19.25
Trash (burned or buried) -98.47 -92.69
Sachet Use 0.55 0.55
Toilets (KVIP) -3.75 1.87
Toilets (flush or KVIP) -3.42 1.88
Bednet Use -87.62 -23.67 |-26.81
Possessions Index -67.37 -60.99
Ethnicity (2000 Census)

% Akan -39.62 -59.85

% Ga -53.65 -62.89

% Mole-Dagbani -63.03 -65.39
Religion (2000 Census)

% Christian -33.52 -34.46

% Muslim -44.57 :51.74 | -42.20
Migrants(%) -101.42 -22.11
2000 Slum Index 2.94 -18.16
2000 Housing Quality Index 5.61 0.91

Table 11. AICc values for both OLS and global spatial error models for 2002 and
At,002-2010 dates. A decrease in the AICc value of > 3 is considered an indication of
improved model specification. Values in green represent improved models, where
values in yellow represent error or lag models that did not meet the criteria to be
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considered an improvement of model fit. A value in blue denotes the specification of an

error model.
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4.3 Comparing Results to a GWR Model & a Spatial
Regimes Approach

Results from the global regression models were compared to the results provided by a
geographically weighted regression (GWR). A majority of models contained severe design
problems and would not compute due to the small sample size and low degrees of freedom.

The premise of the spatial regimes approach is to divide the dataset into relatively
homogeneous regions and then model each region separately to create a dual specification
that would assist in accounting for the effects of spatial heterogeneity. A major issue was
encountered due to a fatally low amount of degrees of freedom in each model. In order to
proceed with the spatial regimes approach, a much larger sample of EAs would need to be
gathered, increasing the degrees of freedom for each model and allowing for a proper model

fit for each spatial regime.
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CHAPTER 5

DiscussioN & CONCLUSIONS

The relationships between neighborhood ethnic proportions and image metrics have
demonstrated to be significant products of this study, due to the link between neighborhood
ethnic compositions, neighborhood religious composition and differing levels of child
mortality (Weeks et al. 2006). As previously stated, a person who belongs to a non-Christian
faith or is a member of the Ga ethnic group will tend to have a higher risk of bad health. If
certain image metrics such as vegetated land cover fractions or building density proxies can
correctly indicate regions where specific ethnic or religious interest groups tend to live based
on the physical properties of their environment, policy makers and health officials may find it
easier to dispatch the necessary aid or resources to help investigate and combat high levels of
child mortality and other forms of disease. Sverdlik (2011) has underlined that informal
settlements across sub-Saharan Africa are undergoing many emerging urban health risks and
inequalities, many of which are reflected by the environment they reside in. Sverdlik (2011)
also denotes that these communities are currently facing the “double burden” of both
communicable and non-communicable diseases, and society must create interventions to
ensure that populations living in these informal regions may obtain a higher health and
socioeconomic status.

An emphasis must be placed on the fact that the relationships within this study are
only limited to the aforementioned slum regions. In order to comprehensively understand the
dynamic relationships between the environment and the characteristics of the populace
within, a call must be made to examine non-slum areas. Limiting our examination of
population — environment relationships to only slum regions has likely limited the range of
variables that may be explored, with the possibility of skewing the interpretation or
understanding of the dynamics of the urban environment and its morphology. The
comparison of the ability of image metrics to indicate survey characteristics must be
compared between slum and non-slum areas. Understanding areas with a variety of
socioeconomic characteristics may enable different relationships to be discovered and
contrasted with slum regions that could possibly be at more or less of a disadvantage than

previously believed.
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It has been demonstrated that there are moderately strong, significant relationships
between remotely-sensed variables and household attributes gathered from ground survey in
slum neighborhoods of Accra, Ghana. The exploitation of remote sensing metrics as proxies
for socioeconomic and health conditions opens up new pathways in the fields of social and
public health research. The creation of remote proxy variables for health and welfare
characteristics allows for a nuanced method of data collection in developing countries. This
study takes a step forward in advancing the increasing capabilities of remote sensing in the
public health, socioeconomic, and demographic sectors, and will aid in the analysis of further
data in Ghana. Individual and household surveys normally costing tens of thousands of
dollars and large investments of time could potentially be parsimoniously streamlined.
Observing changes in urban morphology within a sub-Saharan African developing city is
becoming increasingly important, specifically within slum neighborhoods. It is in these cities
where most of the world’s population increase will occur in the next 50 years.

Distinguishing where these changes are taking place is the first step in understanding how to
predict the health and well-being of the residents in these neighborhoods. The results carry
implications from a policy creating standpoint, as a healthy city is a happy, efficient and

more prosperous city.
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APPENDIX 1

DISTRIBUTION OF ROOF TYPES IN THE AMA
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Appendix 1. Distribution of roof materials for both corrugated metal roofs (top) and
slate roofs (bottom). Households with primarily slate roofs tend to be located in the
older slum regions surrounding Nima, whereas corrugated metal roofs tend to
dominate the lower-lying coastal regions of the AMA.
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Proportional Decrease in Survey Data by EA (2003-2010)

Variable 504031 504036 505050 603005 Mean EA A

A Electricity 0.056 -0.097 0.182 0.050 0.018
A Charcoal Use 0.114 -0.094 -0.111 0.020 0.026
A Eviction Possibility 0.200 0.057 0.222 0.118 0.224
A Bednet Use 1.000 0.910 0.791 0.927 0.831
A Possessions Index 0.097 0.112 0.242 0.238 0.178
A Trash Disposal

Collected -0.870 -0.427 -0.734 -0.550 -0.543

Dumped Offsite 0.870 0.427 0.734 0.520 0.518

Burned or Buried 0.000 0.000 0.000 0.000 0.021
A Water Source

Piped -1.067 -0.370 0.250 0.227 -0.568

Piped (inside) -0.333 -0.111 0.042 -0.023 -0.196

Piped (outside) -0.733 -0.259 0.208 0.250 -0.372

Sachet Use 0.867 0.630 0.000 0.318 0.412
A Toilet Facility

Flushing -0.100 -0.183 0.195 0.000 -0.029

KVIP 0.245 -0.125 -0.333 -0.377 -0.339

Flush or KVIP 0.144 -0.308 -0.139 -0.377 -0.368
A Ethnicity (%)

Akan -0.036 -0.019 0.051 0.092 -0.016

Ga -0.089 0.180 -0.006 -0.002 -0.001

Ewe 0.051 0.004 -0.057 -0.003 -0.014

Mole-Dagbani -0.011 -0.042 -0.036 0.005 -0.033
A Religion (%)

Christian 0.000 -0.088 -0.088 0.031 -0.050

Muslim 0.020 0.111 0.047 -0.026 0.055
A Migrants (%) 0.583 0.533 0.443 0.459 0.413
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Variable Mean EA A

A Electricity 0.018
A Charcoal Use 0.026
A Eviction Possibility 0.224
A Bednet Use 0.831
A Possessions Index 0.178
A Trash Disposal

Collected -0.543

Dumped Offsite 0.518

Burned or Buried 0.021
A Water Source

Piped -0.568

Piped (inside) -0.196

Piped (outside) -0.372

Sachet Use 0.412
A Toilet Facility

Flushing -0.029

KviIP -0.339

Flush or KVIP -0.368
A Ethnicity (%)

Akan -0.016

Ga -0.001

Ewe -0.014

Mole-Dagbani -0.033
A Religion (%)

Christian -0.050

Muslim 0.055
A Migrants (%) 0.413
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APPENDIX 3

R PROGRAM OF LACUNARITY CODE
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T T S R T I R
# Lacunarity.R
By Milo Vejraska & Alex Zvoleff

Computes lacunarity for a 3 band image

- Input image must be separated into 3 bands. This script runs
lacunarity for bands 4, 3 & 2 or a multispectral or
pan-sharpened image.

HoH oH H H H H

B R R R R R B R R B B F R P B B S R R B R

library(rgdal)
library(raster)
library(nnet)
library(snow)

library(ggplot2)

#set working directory
setwd(c("G:/Ghana/lmagery/lacunarity"))
getwd()

dir()

# Open raster bands

band4 <- raster("qb02psms_unreg_band4.tif")
band3 <- raster("qb02psms_unreg_band4.tif")
band2 <- raster("qb02psms_unreg_band4.tif")

# image(band4)
# image(band3)
# image(band2)

# Calculate 3x3 focal min & max for each band

band4min <- focal(band4, w=3, fun=min, na.rm=TRUE)
band3min <- focal(band4, w=3, fun=min, na.rm=TRUE)
band2min <- focal(band4, w=3, fun=min, na.rm=TRUE)

band4max <- focal(band4, w=3, fun=max, na.rm=TRUE)
band3max <- focal(band4, w=3, fun=max, na.rm=TRUE)
band2max <- focal(band4, w=3, fun=max, na.rm=TRUE)

# Calculate pixel relative heights

rhband4 <- band4max - band4min - 1
rhband3 <- band3max - band3min - 1
rhband2 <- band2max - band2min - 1

# Layerstack relative height bands
rhstack <- stack(rhband4, rhband3, rhband?2)

# Compute pixel mass

mass <- sum(rhstack)

# writeRaster(mass, "qb02ms_mass.tif")
# mass <- raster("gb02ms_mass.tif")
image(mass)

# Create lookup table.
lut_vals <- unique(mass)
lut <- matrix(c(lut_vals, rep(0, length(lut_vals))), ncol=2)

# Process over blocks (rather than rows) to save processing time.
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pb <- txtProgressBar(style=3)
bs <- blockSize(mass)
for (block_num in 1:bs$n) {
setTxtProgressBar(pb, block_num/bs$n)
this_block <- getValues(mass, row=bs$row[block_num], nrows=bs$nrows[block_num])
lut_pos <- match(this_block, lut[,1])
for (i in 1:length(lut_pos)) {
lut[lut_posl[i],2] <- lut[lut_pos][i],2] + 1
}

}
close(pb)

# Replace values with occurrences
nboxes <- nrow(mass) * ncol(mass)
lut[,2] <- lut[,2)/nboxes

# Create gmr raster
out <- writeStart(raster(mass), "gb10ms_gmr_test.tif")
pb <- txtProgressBar(style=3)
bs <- blockSize(mass)
for (block_num in 1:bs$n) {
setTxtProgressBar(pb, block_num/bs$n)
this_block <- getValues(mass, row=bs$row[block_num], nrows=bs$nrows[block_num])
# Define Q(M,r) probability function
lut_pos <- match(this_block, lut[,1])
this_block <- lut[,2][lut_pos]
gmr <- this_block
writeValues(out, gmr, bs$row[block_num])

}

out <- writeStop(out)
close(pb)

# Square mass image (M2)
m2 <- mass * mass

# Compute M2 x Q(M,r)
m2gmr <- m2 * gmr

# Compute M x Q(M,r)
mgmr <- mass * gmr

# Mean sq deviation of mass distribution fluctuations
num <- m2 + gmr

# Square mean of mass dist flucts
denom <- (mass + gmr) + (mass + gmr)

# Compute lacunarity
lac <- num/denom
writeRaster(lac, "gb10_lacunarity.tif")

B R R R T R R I R T R T R R R T T R R R
# END SCRIPT........
B R R R T R R I R T R T R R R T T R R R
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