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ABSTRACT 

 

Population dynamics throughout the urban context: A case study in sub-Saharan 

Africa utilizing remotely sensed imagery and GIS 

 

by 

 

Magdalena Benza 

 

The characteristics of places where people live and work play an important role in 

explaining complex social, political, economic and demographic processes. In sub-

Saharan Africa rapid urban growth combined with rising poverty is creating diverse 

urban environments inhabited by people with a wide variety of lifestyles. This 

research examines how spatial patterns of land cover in a southern portion of the 

West African country of Ghana are associated with particular characteristics of family 

organization and reproduction decisions. Satellite imagery and landscape metrics are 

used to create an urban context definition based on landscape patterns using a 

gradient approach. Census data are used to estimate fertility levels and household 

structure, and the association between urban context, household composition and 

fertility levels is modeled through OLS regression, spatial autoregressive models and 

geographically weighted regression. Results indicate that there are significant 

differences in fertility levels between different urban contexts, with below average 
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fertility levels found in the most urbanized end of the urban context definition and 

above average fertility levels found on the opposite end. The spatial patterns 

identified in the association between urban context and fertility levels indicate that, 

within the city areas with lower fertility have significant impacts on the reproductive 

levels of adjacent neighborhoods. Findings also indicate that there are clear patterns 

that link urban context to living arrangements and fertility levels. Female- and single-

headed households are associated with below average fertility levels, a result that 

connects dropping fertility levels with the spread of smaller nuclear households in 

developing countries. At the same time, larger extended family households are linked 

to below average fertility levels for highly clustered areas, a finding that points to the 

prevalence of extended family housing in the West African city.  
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Population dynamics throughout the urban context: A case 

study in sub-Saharan Africa utilizing remotely sensed imagery 

and GIS  

 

 

 

By altering landscapes, human populations have been able to generate resources 

that have led to the advancement of societies (DeFries, Asner and Foley 2006). In the 

process, humans have transformed more than 40% of the ice free land surface. In the 

coming decades most of the world’s land cover and land use change (LCLUC) is 

predicted to take place in the tropics, where population is growing the fastest 

(DeFries, Asner and Foley 2006). United Nations’ projections estimate that virtually 

all of the world’s population between now and the middle of this century will emerge 

in cities of the developing world (United Nations Population Division 2011), driven 

by natural increase in both urban and rural areas, along with continued migration 

from rural to urban areas as people search for economic opportunity (Lee 2007). 

Urbanization plays a major role in shaping landscapes in and around cities through 

densification and sprawl, but also far away from them as increased interactions with 

cities are pushing diversification in rural livelihoods (Lambin et al. 2001; Seto et al. 

2012). 

I. Introduction 
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Literature on urbanization of the developing world is mostly focused on large 

cities and their prevailing slums, while largely ignoring the magnitude of urban 

growth that is taking place in small and mid-size cities (Montgomery 2008). 

However, most urban dwellers in Asia, Africa and Latin America live in urban 

settlements with less than one million people (United Nations Population Division 

2011), and it is in those intermediate cities and market towns that we can expect the 

most rapid rates of population growth with related implications for LCLUC  (Cohen 

2006). The spread of population into urban places is important because it virtually 

revolutionizes the way of life. It puts people in the path of becoming “modern” in the 

sense that they begin to leave behind traditional ways of thinking and behaving and 

adopt the more western modes of living that characterize urban places everywhere in 

the world, albeit with considerable spatial variability (Newson and Richerson 2009). 

One of the most important changes in life associated with urban living is in the way 

people think about families. “The demographic transition is in essence a transition in 

family strategies: the reactive, largely biological family-building decision rules 

appropriate to highly uncertain environments come eventually to be supplanted by 

more deliberate and forward-looking strategies that require longer time horizons” 

(Cohen and Montgomery 1998:6). Put another way, the transition is from “family 

building by fate” to “family building by design” (Lloyd and Ivanov 1988:141). These 

are changes that are not necessarily dependent upon economic growth, as was once 

thought, but rather may actually contribute to economic growth in cities of 

developing countries. 
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In sub-Saharan Africa, while urban growth is fueled by rising rural-urban 

migration, it is also largely driven by the urban rate of natural increase as mortality 

rates continue to fall faster than fertility rates (Montgomery 2008; Weeks 2008). 

Although research in the region has indicated that urbanization is associated with 

falling fertility levels (Brockerhoff and Yang 1994), urban fertility remains high 

compared to the rest of the world (White et al. 2008). This means that, even though 

places are urbanizing rapidly, the rate of assimilation to the urban lifestyle varies 

within urban spaces. In sub-Saharan Africa total fertility rates (TFR) are amongst the 

highest in West Africa, a region that remains largely rural and where fertility is 

declining at a very slow pace. Within the region, Ghana is leading the fertility 

transition. With an average TFR of 4 children, it is ahead of neighbors such as Côte 

D’Ivoire with a TFR of 5 or Burkina Faso with a TFR of 6 (Measure 2008). Ghana is 

at the same time leading the urbanization trend spreading throughout the region, 

having become one of the three countries with over 50% of their populations residing 

in urban areas as of 2010 (United Nations Population Division 2011). Understanding 

the demographic changes taking place in Ghana will help anticipate the demographic 

changes that will take place in the rest of the region as West Africa becomes 

increasingly urban. This study investigates how landscape characteristics associated 

with urbanization in southern Ghana provide clues to changes in the social context 

that are associated with fertility declines. The overall objective is to test the general 

hypothesis that the characteristics of the urban context in a region are associated with 

the way that family structure is organized and ultimately with fertility outcomes.    
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Research Questions 

This study addresses three major research questions:  

1. Does a pattern-based definition of urban context capture the diversity of urban 

landscapes? 

2. How are household composition and fertility levels associated with urban 

context?  

3. How does the association between urban context, household composition and 

fertility vary through space?  

The urban context is defined using satellite imagery and a combination of remote 

sensing and GIS techniques. The spatial patterns of the urban context are examined 

through landscape metrics applied to image-derived maps of built and vegetation land 

cover in order to generate an indicator of degree of urbanization. The resulting 

definition of degree of urbanization is then compared to household composition, 

drawing on data from the 2000 census of population and housing, testing the 

hypothesis that as places become increasingly urban, living arrangements become 

westernized, which in turn is associated with lower fertility levels.  
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A. Portraying urban contexts through satellite imagery and GIS 

1. Mapping urban areas with satellite imagery 

The United Nations’ guidelines for collection of population data identifies urban 

localities as distinct population clusters with a recognized name, where the population 

resides in neighboring buildings within an administrative area (Champion 2004). 

Urban population data collected worldwide following the UN guidelines are 

constrained to administrative boundaries and thus are unable to delineate the extent of 

built up areas outside those administrative boundaries (Champion 2004). Settlement 

mapping is increasingly relying on the use of satellite imagery through the 

development of objective, automated and replicable methodologies for the detection 

of artificial land covers (Pumain 2004).   

The physical characteristics of urban places generate spatial and spectral 

signatures that are readily identified with remotely sensed data (Elvidge et al. 2004) 

and, as a result, detection and monitoring of urban growth at global, regional and 

local scales is increasingly relying on the use of such data (Ward and Phinn 2000; 

Small 2005; Lu and Weng 2006; Potere et al. 2009). In developing countries, where 

urbanization is taking place at the fastest rate (United Nations Population Division 

2011), the geographic comprehensiveness of satellite imagery has made it a useful 

II. Literature review 
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tool for quantifying and monitoring the distribution and growth of human settlements 

(Harris and Longley 2002; Small 2003; Weeks 2004).  

While different urban land uses are composed of different combinations of land 

covers, a common denominator of cities throughout the world is the predominance of 

built materials and features. This is why in remote sensing research urban landscapes 

are generally defined as lands composed mostly of impervious surfaces or built 

environments (Arnold and Gibbons 1996). The built environment corresponds to 

artificial structures such as buildings, paved roads, parking lots and sidewalks where 

cement or asphalt prevail (Weeks 2003; Lu and Weng 2008). 

At the global scale, mapping of urban areas has extensively relied on coarse 

resolution imagery such as 1 km spatial resolution daily data from Systeme Pour 

L’Observation de la Terre (SPOT-4) Vegetation sensor (Bartholomé and Belward 

2005), 300 m data from the Medium Resolution Image Spectrometer (MERIS) (Arino 

et al. 2007), 1 km and 500 m imagery from the Moderate Resolution Imaging 

Spectrometer (MODIS) (Schneider et al. 2003; Schneider, Friedl and Potere 2010) 

and 2.2 km night lights data from the Defense Meteorological Satellite Program-

Operational Linescan System  (DMSP-OLS) (Small, Pozzi and Elvidge 2005; Elvidge 

et al. 2007). At regional scales the extent of urban areas has been successfully 

estimated and monitored through time using DMSP-OLS night time lights imagery 

(Imhoff et al. 1997; Zhang and Seto 2011). Night lights imagery provides an 

important approximation of the distribution of human activity worldwide by 
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estimating the extent of the electric power grid and intensity of night-time light 

associated with human activities. However, given its coarse resolution and pervasive 

blooming effects, night lights imagery is limited in its capacity to define accurate 

urban extents and precise city locations (Imhoff et al. 1997; Small, Pozzi and Elvidge 

2005).  At finer scales Landsat MSS, TM and ETM+ satellite systems provide an 

extensive and accessible worldwide archive of moderate spatial resolution imagery 

that has proven to be a significant source of imagery for studies monitoring urban 

areas and settlements in a wide range of environments (Small and Miller 1999; Seto 

and Fragkias 2005; Small 2005; Lu and Weng 2008). At local scales high spatial 

resolution airborne and commercial satellite imagery enables identification and 

mapping of important details about urban features within the city, but its use is 

limited by its higher costs and its lower frequency of collection compared to moderate 

or coarse resolution imagery (Potere et al. 2009).  

1.1. Spectral mixture analysis of urban environments 

Remote sensing scene models are generally classified as either H-resolution (High 

resolution) or L-resolution (Low resolution) models (Strahler, Woodcock and Smith 

1986). In H-resolution models the individual objects are larger than the cell 

resolution, whereas in L-resolution models objects of interest are smaller than the cell 

resolution. In order to detect the arrangement of individual objects, the cell resolution 

has to be smaller than the average object in the scene. In the case of urban landscapes 

individual objects can only be detected in H-resolution models because of the 

variability in object sizes and the spectral heterogeneity characteristic of the city (Lu 
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and Weng 2004; Small 2005). However, analysis of the urban environment based on 

high resolution sensors has proved to be a complex process as higher resolutions 

significantly increase spectral variance (Barnsley and Barr 1996). Medium spatial 

resolution optical sensors with spatial resolutions ranging between the 10 and 100 

meters are an accessible source of imagery that allows researchers to successfully 

differentiate built-up areas from other land cover types (Chen, Stow and Gong 2004; 

Small 2005). Urban applications of Landsat imagery correspond to an L-resolution 

model, where individual objects cannot be detected and pixels represent a 

combination of different elements (Lu and Weng 2004). Traditional per-pixel 

classifiers rely on a hard classification scheme that assigns each pixel to a single 

class, a methodology that is efficient for H-resolution scene models that are able to 

detect individual objects. In the case of L-resolution scene models pixels represent 

combinations of individual objects, departing from the assumption that each pixel 

belongs to an exclusive class which makes traditional per-pixel classifiers unsuitable 

(Rashed et al. 2003). 

The incompatibility of traditional per pixel classifiers and L-resolution scene 

models has led to the emergence of fuzzy classification and spectral mixture analysis 

(SMA) techniques, based on membership levels (Rashed et al. 2003). SMA extracts 

sub-pixel information by assuming that the spectral reflectance of a pixel is the 

product of the linear combination of the spectra of pure components or end-members 

(Lu and Weng 2008). The resulting proportions of end-members correspond to the 

portion of each pixel that is covered by each pure component (Lu and Weng 2008). 
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Even though SMA was originally developed to classify natural environments 

(Adams, Smith and Gillespie 1993; Roberts, Gardner, et al. 1998),  the technique was 

adapted to urban landscapes by Ridd (1995) to represent the land cover of Salt Lake 

City as a combination of vegetation, impervious surface and soil (VIS).  The accuracy 

of the proportions generated by SMA is highly dependent on the selection of spectral 

end-members used to represent pure vegetation, impervious or soil patches of land 

surface in the un-mixing process. End-member spectra can be collected from field or 

laboratory spectral reflectance measurements (Roberts, Batista, et al. 1998) or from 

the imagery’s extreme spectral-radiometric features using methods such as the 

minimum noise fraction (Small 2003; Wu and Murray 2003; Lu and Weng 2004; Wu 

2004; 2007) or the pixel purity index (PPI) (Phinn et al. 2002; Rashed et al. 2003). 

PPI assists in the identification of pure class (i.e., end-member) pixels by ranking 

their values based on how often they are repeated in the extremes of the spectral 

distribution of the image (Boardman, Kruse and Green 1995). Urban applications of 

SMA based on Ridd’s (1995)VIS mixture model have produced satisfactory results 

for the detection of built classes in the United States (Wu and Murray 2003; Lu and 

Weng 2004; Wu 2004), Australia (Ward, Phinn and Murray 2000; Phinn et al. 2002) , 

Thailand (Madhavan et al. 2001; Song 2005), Brazil (Lu et al. 2004), Germany 

(Matthias and Martin 2003) and Egypt (Rashed et al. 2001). For regional to global 

scale observations, Small (2005) showed that SMA is suitable to detect human 

settlements by comparing cities in different regions.  
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1.2. Detecting urban areas with Radar imagery 

In tropical regions where cloud cover is a common problem for optical remote 

sensing, radar imagery has become an important source of data (Rogan et al. 2003). 

The pulse generated by active sensors in the microwave portion of the 

electromagnetic spectrum is capable of transmitting through clouds providing 

information about the features below them on the ground (Kasischke, Melack and 

Dobson 1997; Henderson and Xia 1998). While optical sensors are limited by how 

short to medium wavelength electromagnetic energy is absorbed by clouds and 

precipitation in the atmosphere and land surfaces, synthetic aperture radar (SAR) 

sensors are capable of transmitting and receiving microwave energy that is sensitive 

to physical characteristics of land surfaces such as roughness, morphology and 

geometry, in most atmospheric conditions (Soergel 2010).  SAR remote sensing 

applications have been successfully used to estimate tropical forest cover (Grover, 

Quegan and da Costa Freitas 1999), tropical coastal vegetation (Simard et al. 2002) 

and human settlements (Henderson and Xia 1997; Stasolla and Gamba 2008). 

Applications of SAR imagery for urban mapping have proven to be very effective, 

given the high return characteristic of man-made features (Haack and Bechdol 2000).  

The return or backscatter captured by the SAR sensor is determined by the 

characteristics of the pulse, its wavelength, polarization, incidence angle, look 

direction and characteristics of the terrain that include dielectric properties and 

roughness (Xia and Henderson 1997). Shorter wavelengths in SAR systems provide 

higher spatial resolutions with the tradeoff of more limited transmission in some 
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atmospheric conditions. Urban mapping studies have shown that while shorter 

wavelengths allow detection of smaller settlements they also increase noise and 

reduce image contrast (Henderson and Xia 1997).  Different polarizations enable 

capture of different types of signals because of differential backscatter. While cross-

polarized radar imagery is sensitive to volume scatter, like-polarized images tends to 

be sensitive to surface scatter (Xia and Henderson 1997). In urban mapping cross-

polarized imagery has traditionally been favored over like-polarized (Haack 1984; 

Hussin 1995). However, researchers are increasingly finding like-polarized imagery 

to be effective for urban area mapping and feature detection (Dekker 2003; 

Dell'Acqua and Gamba 2003). Incidence angle and look direction play important 

roles in determining the backscatter captured in radar imagery. While large incidence 

angles generate higher spatial resolutions they tend to produce larger shadows 

following the look direction of the sensor. The direction the sensor is facing when the 

pulse is generated creates “cardinal effects” in radar imagery which means that 

buildings and walls act as dihedral and trihedral reflectors at very specific angles of 

look direction. In urban mapping cardinal effects explain why urban areas might 

generate high bright returns in one orientation and medium gray ones in different 

orientations (Xia and Henderson 1997).  

Two main terrain characteristics determine the intensity of the radar backscatter: 

the complex dielectric constant that defines the capacity of the terrain or material to 

conduct electric energy; and the surface roughness that describes its texture as 

smooth, intermediate or rough (Jensen 2000).  In urban environments, metallic 
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objects, characteristics of roofs, bridges, utility poles and other urban features have 

high complex dielectric constants which, combined with the tendency of buildings 

and walls to create corner reflectors, generates high returns (Xia and Henderson 

1997). The complexity of the urban environment tends to be characterized by high 

heterogeneity in radar returns, due to the polyhedral nature of man-made features 

which generate both high and low returns at the same time.     

A major issue in dealing with radar imagery is the large amount of coherent 

interference generated by individual scatterers of the monochromatic radiation 

generated and recorded by the radar antenna, which produces speckle or noise in the 

imagery (Haack et al. 2002). In order to reduce speckle, different look angles can be 

combined into a single image that averages backscatter. This process, called multi-

looking, reduces speckle but at the same time reduces the spatial resolution of the 

image (Henderson and Xia 1998; Soergel 2010). Speckle can also be reduced for 

single look images by applying filters, such as moving window filters that smooth 

noise by removing outlying extreme pixel values. Filters that are commonly used for 

speckle reduction in radar imagery are mean, median and root mean square filters 

(Thomson et al. 1987), adaptive filters (Frost et al. 1982; Rao et al. 1995), 

multiplicative filters (Lee 1981; Kuan et al. 1985) and K-average filters (Davis and 

Rosenfeld 1978). The latter have the ability to reduce multiplicative noise that is 

characteristic of SAR speckle (Lee et al. 1994).   
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Researchers exploit the ability of radar imagery to detect structures and forms 

through the use of measures of texture. Measures of texture are calculated using a 

moving window that estimates the variability in pixel brightness within the frame. 

Measures of texture provide valuable information about the heterogeneity or 

homogeneity of pixel values within an area (Weeks et al. 2004). The use of texture 

extracted from radar imagery allows for the delineation of features and has been 

found to improve image classification of land cover and land use. Herold, Haack and 

Solomon (2004) compared the results of classifications of land use/land cover for 

sites in Kenya, Sudan, and Katmandu using SAR imagery and texture. Their results 

suggest that the accuracy of the classifications improved noticeably with the use of 

texture measures. Dell’Acqua and Gamba (2003) used co-occurrence measures of 

texture to classify building density and found that measures of texture estimated with 

window sizes corresponding to the average size of a block were able to differentiate 

the high density center of an Italian city from intermediate density residential and low 

density suburban areas. Dell’Acqua, Stassolla and Gamba (2006) used co-occurrence, 

mean, variance, entropy and dissimilarity measures of texture extracted from 

ENVISAT ASAR imagery to successfully detect formal and informal human 

settlements in Sudan and Senegal. 

Radar images provide information about features on the ground in two and three 

dimensions but typically with a single narrow waveband, making them hard to use as 

a single source of information for spectral discrimination of land cover (Herold, 

Haack and Solomon 2004). Radar applications have been particularly successful in 
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detection of human settlements when combined with optical data (Haack and 

Slonecker 1994; Haack et al. 2002). In the Katmandu Valley of Nepal, Haack et al. 

(2002) tested different combinations of radar and Landsat imagery products for urban 

delineation, finding that the combination of a mean filter and a variance texture 

applied to RADARSAT imagery produced the most accurate classifications. Haack 

and Bechdol (2000) found that the combination of radar imagery with optical data 

produced highly accurate classifications and that the use of filters and textures in the 

case of radar imagery increased the accuracy of land cover mapping in Tanzania,. In 

Kenya, Tatem and Hay (2004) combined radar imagery from the Japanese Earth 

Resources Statellite-1 (JERS-1) with Landsat ETM+ to map settlements and 

determine populations at risk of exposure to malaria.  

2 Examining urban pattern 

Research on land cover and land use focuses on the connection between the 

biophysical characteristics of the earth’s surface, depicted as land cover, and the way 

people make use of the earth’s surface, described as land use (Geist and Lambin 

2002). Although anthropogenic changes in land cover are increasingly being 

recognized as major drivers of global change, little is known about the feedbacks 

connecting environmental pattern and social processes (Nagendra, Munroe and 

Southworth 2004). Interactions between population and the environment are hard to 

establish given the complexity and dynamics of their characteristics over spatial and 

temporal scales (Bian and Walsh 2002).  While satellite imagery is an efficient source 
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of data for monitoring land cover characteristics, it is less successful in monitoring 

the social processes behind changes in land use (Rindfuss and Stern 1998; Longley 

2002). From a methodological standpoint the major challenge in studying population-

environment interactions comes from the differences in units and scales of analysis 

(Longley 2002; Rindfuss et al. 2004). Geographical information systems (GIS), with 

their flexibility in location-based data management, are becoming an important tool 

bridging studies of spatial pattern and social process and are improving the 

understanding of land cover and land use change (Nagendra, Munroe and Southworth 

2004). The combination of remote sensing and GIS techniques is particularly valuable 

for environmental modeling where researchers are increasingly taking advantage of 

the complementarities of the two geospatial technologies (Wilkinson 1996). In urban 

studies the combination of remote sensing and landscape metrics has become an 

important approach for understanding urban morphology (Herold, Couclelis and 

Clarke 2005).  

Studies in landscape ecology have demonstrated the need to understand the 

impacts of landscape fragmentation on ecological systems (Gustafson 1998; Hargis, 

Bissonette and David 1998). Spatial patterns in landscapes are quantified through 

landscape metrics that permit a close examination of the spatial dimension of 

ecological processes (Gustafson 1998).  By studying the spatial arrangements of 

ecosystems, researchers have found that landscape patterns have an impact on the 

spread of disturbance (Franklin and Forman 1987; Turner 1987) and the distribution 

of habitats (McGarigal and McComb 1995). GIS facilitates the identification and 
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quantification of natural and human managed patches with varying sizes, shapes and 

arrangements (Turner 1990). A wide range of landscape metrics have been developed 

into software such as FRAGSTATS (McGarigal and Marks 1995) and a variety of 

user-generated programs (Turner 1990). Researchers have examined in detail the 

diversity of landscape metrics used in different fields, finding that they all rely on a 

very restricted set of common parameters. Patch size, perimeter-area ratio and inter-

patch distance play important roles in shaping the bulk of landscape metrics, which 

suggests the existence of spatial autocorrelation (covariance) between many of them 

(Li et al. 1993; Li and Wu 2004). Researchers have addressed the matter of spatial 

autocorrelation by developing simulations that combine different patch sizes and 

spatial arrangements (Li et al. 1993; Hargis, Bissonette and David 1998) and 

analyzing the metrics through principal component analysis (McGarigal and 

McComb 1995; Riitters et al. 1995). McGarigal and McComb (1995) used principal 

components analysis (PCA) on a set of 25 landscape metrics to create three indicators 

that described shape and edge contrast, patch density and patch size through which 

they were able to identify that bird species were more abundant in fragmented 

habitats. Riitters et al. (1995) used PCA on 55 landscape metrics over a wide variety 

of landscapes throughout the world and concluded that 26 of them explained most of 

the variability in five factors: patch compaction, image texture, patch shape, perimeter 

area scaling and number of attribute classes. 

Landscape metrics have become an important tool for researchers to study the 

effects of fragmentation on the biophysical environment but they are also increasingly 



17 

 

being recognized as a useful set of indicators of human activity (Wickham, O'Neill 

and Jones 2000). Research in human environment interactions indicates that a 

detailed understanding of landscape characteristics provides important information 

about context that can shed some light into important social processes (Entwisle et al. 

1998). While researchers have found that with urban growth the demand for land 

conversion has been steadily increasing and driving important habitat fragmentation 

(Wickham, O'Neill and Jones 2000), little is known about how the urban landscape is 

changing as cities grow (Liu and Herold 2007; Seto and Shepherd 2009). As the 

world’s population has become predominantly urban, the rapid pace of urbanization is 

shaping the morphology and function of cities around the world (Longley 2002).  

Pesaresi and Bianchin (2003) note that as early as the 1960s urban planners used 

measures of compactness, porosity and dispersion of built areas to describe the 

morphology of the city. Nowadays such measures of morphology can be readily 

extracted from a combination of satellite imagery and spatial analysis in GIS. The 

study of spatial organization and urban growth patterns is expanding the 

understanding of increasingly complex urban systems as cities grow (Liu and Herold 

2007). 

Studies have found that measures of texture and morphology extracted directly 

from satellite imagery provide important insight into the physical structure of 

settlement systems. In Italy, Brivio and Zilioli (2003) used geostatistics on Landsat 

multispectral imagery to depict urban structure for settlements of varying sizes and 
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quantify patterns of anisotropy discovering that patterns identified in the semi-

variograms coincided with particular urban characteristics of the area. In northern 

Italy Pesaresi and Bianchin (2003) used a regional approach to settlement 

classification from satellite imagery using texture to describe urban patterns finding 

that through the comparison of multi date measures of structure it is possible to 

uncover patterns of morphological transition. Gong and Howarth (1990) incorporated 

a high pass filter and edge detection to generate a structural information band that 

improved significantly their land cover classification in the rural-urban fringe of 

Toronto.   

In the United States and Europe, researchers studying urban form have found that 

landscape metrics of multi-class land cover land use maps derived from classified 

remotely sensed imagery efficiently portrays the complexity of cities (Herold, Scepan 

and Clarke 2002; Luck and Wu 2002; Herold, Goldstein and Clarke 2003; Pesaresi 

and Bianchin 2003). In Santa Barbara, Herold, Liu and Clarke (2003) found that 

landscape metrics and measures of texture contribute to the differentiation of land use 

classes, and Herold et al. (2002) found that landscape metrics signatures facilitate the 

quantification of urban growth processes.  In the same region, Liu and Herold (2007) 

found that landscape metrics and geostatistics provide important details about urban 

patterns that are valuable for land use classifications and also for the analysis of 

drivers of urban growth. Elsewhere in California, Dietzel et al. (2005) examined 

changes in urban form in three urban areas and found that edge density, patch density 

and nearest neighbor Euclidian distance metrics helped identify phases of diffusion 
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and coalescence in urban growth. Researchers have found that measures of fractal 

dimension capture the complexity of urban form allowing for a detailed 

characterization of a range of urban land uses (Batty and Longley 1988; Mesev et al. 

1995)  

Studies of urban form in developed countries are generally focused on the 

detection and quantification of urban sprawl, typically defined as urban development 

taking place in suburban areas where land uses are segregated, automobile is the main 

form of transport, development takes place at the edge of the metropolitan area, 

densities are lower than within the city and populations tend to be homogeneous 

(Johnson 2001). A composite measure of urban sprawl is proposed by Galster et al. 

(2001) based on eight dimensions: density, continuity, concentration, clustering, 

centrality, nuclearity, mixed use and proximity, confirming that older cities in the 

north east and Midwest correspond to the most consolidated compact urban areas in 

the US. Studies combining landscape metrics with demographic data have compared 

patterns of urbanization between cities worldwide finding clear differences between 

developing and developed countries where densification characterizes the growth of 

cities in the developing world while sprawl is identified as a unique feature of 

developed countries (Huang, Lu and Sellers 2007; Schneider and Woodcock 2008).  

For the Washington DC area, Geoghegan, Wainger and Bockstael (1997) found 

that landscape diversity and fragmentation are correlated with housing and land 

values. Irwin and Bockstael  (2007) discovered that urban fragmentation is 
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increasingly moving farther away from city centers, a sign of the expansion of urban 

sprawl. Hasse and Lathrop (2003) used an urban atomization approach to measure 

sprawl characteristics at the housing-unit level, finding that urban sprawl has diverse 

and significant impacts on natural resources in New Jersey. In Phoenix, studies using 

landscape metrics have identified an urban gradient pattern that changes with distance 

to the city (Luck and Wu 2002), where fragmentation is the highest in low density 

areas on the periphery of the city and urban growth spreads in a contiguous manner 

(Shrestha et al. 2012).  

In the coming years the most important urban transformations of landscapes will 

take place in Asia and Africa, where urban population is growing at the fastest rate, 

but little is known about how these demographic changes will impact the urban extent 

and shape in those regions (Seto and Shepherd 2009). In developing countries, where 

mapping of urban areas is generally dated and less detailed (Weber 2003), studies of 

urban morphology rely heavily on simple urban/non-urban classifications. 

Taubenböck et al. (2009) used landscape metrics to examine patterns of urban growth 

taking place in the twelve largest cities in India distinguishing monocentric urban 

agglomerations with laminar spatial growth from cities that are transitioning from 

monocentric to polycentric through punctual spatial growth and polycentric cities 

growing in a widespread punctual manner. Oleksandr, Lüdeke and Reckien (2012) 

found that measures of texture of a built class map extracted from high resolution 

imagery helped to identify informal settlements and map slums within the city of 

Hyderabad. In Bangalore, studies have found that urban growth is mostly taking place 
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in the periphery of the city where urban fragmentation is transitioning into larger 

compact urban patches (Ramachandra, Aithal and Sanna 2012), which are driving 

increased fragmentation of vegetation land cover (Nagendra et al. 2012). Studies in 

different urban settings in India have used measures of dispersion and fragmentation 

to monitor and model the spread of urban sprawl finding that low density fragmented 

built areas are on the rise (Sudhira, Ramachandra and Jagadish 2004; Mahesh, Garg 

and Khare 2008).  

Seto and Fragkias (2005) examined patterns of urbanization in four Chinese cities 

using landscape metrics of urban growth and found that built patches tend to 

converge and coalesce into larger patches as cities grow. Analyzing changes in urban 

pattern through a series of transects Schneider et al. (2005) detected patterns of 

dispersion, growth of independent nuclei, densification and infill in Chengdu, western 

China. In Guangzhou, China, Yu and Ng (2006) found patterns of urban growth that 

indicate a transition from heterogeneous fragmented landscapes to more aggregated 

and homogeneous ones.  

The selection of spatial metrics for the study of urban environments depends on 

the research question and the particular characteristics of each specific landscape 

(Parker and Meretsky 2004). Studies examining patterns of urban form have selected 

sets of spatial metrics using PCA (Schwarz 2010; Ramachandra, Aithal and Sanna 

2012) or based on previous research that identified metrics suitable to describe 
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specific characteristics of the urban context (Herold, Goldstein and Clarke 2003; 

Sudhira, Ramachandra and Jagadish 2004; Seto and Fragkias 2005).   

Studies focusing on capturing the morphological transition between urban and 

rural places have shown that patch density, mean patch size and patch size variability 

describe best how fragmented, disperse and heterogeneous the built environment is 

(Luck and Wu 2002; Herold, Goldstein and Clarke 2003; Seto and Fragkias 2005). 

While city centers tend to have denser and smaller built patches, the peripheries of the 

city are more likely to have larger and less dense built patches, characteristic of 

suburban development. Areas where mixed land uses prevail can be identified within 

the urban context with the assistance of measures of patch variability, given that they 

can locate spaces with heterogeneous patches. The complexity of the shape of built 

patches provides significant information about degree of urbanization. Researchers 

analyzing transitions of urban form have found that area weighted mean fractal 

dimension is very efficient in differentiating compact urban core areas from complex 

patchy areas found in the urban fringe, where urban form is largely shaped by 

diffusion processes (Longley and Mesev 2000; Herold, Goldstein and Clarke 2003; 

Dietzel et al. 2005; Seto and Fragkias 2005).  Degree of aggregation of urban patches 

provides further details about the structure of the urban context. Studies have found 

that the contagion index captures how clumped together different land covers are 

throughout the landscape providing a broad picture of the spatial arrangement of the 

different land uses within the urban context (Herold, Goldstein and Clarke 2003; 

Dietzel et al. 2005; Yeh and Huang 2009).  
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Urban morphology has been studied through landscape metrics in a variety of 

scales and geographic domains. The study of urban structure with landscape metrics 

requires partitioning the city into homogenous units of analysis (Herold, Couclelis 

and Clarke 2005). Urban studies have found that landscape metrics calculated for 

small area administrative subdivisions provide important detail about urban 

composition (Weeks, Larson and Fugate 2005; Mahesh, Garg and Khare 2008). 

Studies that include peri-urban areas and undeveloped hinterland have defined 

homogeneous regions based on automated segmentation of satellite imagery (Herold, 

Couclelis and Clarke 2005),  bands of buffers around a core metropolitan area 

(Dietzel et al. 2005; Seto and Fragkias 2005; Schneider and Woodcock 2008; 

Nagendra et al. 2012), buffers around individual houses (Geoghegan, Wainger and 

Bockstael 1997) moving windows or kernels (Luck and Wu 2002; Schneider, Seto 

and Webster 2005) or regular grid cells as commonly used for urban modeling 

(Pijanowski et al. 2000; Parker and Meretsky 2004; Song and Knaap 2004; Hahs and 

McDonnell 2006). The decision of how to subdivide a study area to estimate 

measures of spatial composition has to consider how the scale of analysis addresses 

the specific research question but also whether the unit of analysis allows further 

examination of the resulting metrics (Lausch and Herzog 2002; Herold, Couclelis and 

Clarke 2005).  

Major methodological issues arise when trying to integrate physical and social 

sciences, as data from each field are collected for different units of analysis and at 

different scales. Selecting the appropriate aggregation level for studies bridging 
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environment and population fields represents a difficult task (Rindfuss et al. 2004). 

The use of a gridded unit of analysis was proposed by Tobler et al. (1997) as a 

solution to the data incompatibility problem, where a uniform unit of analysis permits 

a direct link between environmental and population variables. Tobler’s gridded world 

population (GWP) method used a five minute quadrangle (9.3 kilometers wide at the 

Equator); newer versions of the GPW have achieved improved resolutions of two and 

a half minutes (5 kilometers wide at the Equator) (Deichmann, Balk and Yetman 

2001; Balk and Yetman 2004). 

3. Pattern-based definition of urban context  

Settlements are defined as urban or rural based on a variety of criteria such as 

population densities, access to basic infrastructure and predominant economic activity 

(Tacoli 1998). Although these definitions vary widely throughout the world 

(Bilsborrow 1998) they are all based on the assumption that there are significant 

differences between rural and urban spaces and their populations (Champion and 

Hugo 2004; Lacour and Puissant 2007). Urban definitions and delineations are 

generally based on an arbitrary threshold that is set as the split between rural and 

urban places (Antrop 2004), without accounting for differences in land use intensity, 

function or heterogeneity (Seto et al. 2012).  However, in urban environments 

different types and densities of buildings, as well as vegetation, can vary within short 

distances (Cadenasso, Pickett and Schwarz 2007).  By portraying rural and urban 

areas as autonomous spaces, dichotomous rural/urban classifications are ignoring the 
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importance of flows of people and products that connect these spaces (Hugo, 

Champion and Lattes 2003; Rain 2007; Seto et al. 2012). With urban growth 

landscapes are changing within cities as well as in the countryside, where increased 

connectivity to the city is creating hybrid landscapes in which rural and urban 

livelihoods overlap (Hugo, Champion and Lattes 2003; Lacour and Puissant 2007; 

Seto et al. 2012). Rising suburbanization trends are forming edge cities that are 

increasingly facilitating urban spread into rural areas (Zipperer et al. 2000) and 

blurring the distinctions between rural and urban places (Hugo, Champion and Lattes 

2003).  While the ongoing global urbanization trend is widely accepted, there is still 

much to know about how it is affecting the environment and people within urban 

areas. 

In the mid 1970’s, Anderson (1976) proposed a land use and land cover 

classification scheme for remotely sensed data, using a hierarchical structure that 

standardizes the system of land use classes at the most general level with a second tier 

of classes detailing more specific cover and usage characteristics. The urban context 

is defined at the highest level by Anderson’s scheme as urban or built land, expanding 

in the next level to differentiate between residential, commercial/services, industrial, 

transportation, communication/utilities, industrial/commercial complexes, mixed 

built, and other built land uses. Anderson’s classification has been adapted for other 

land use land cover classification schemes such as the National Land cover Data Set 

(NLCD) (Vogelmann et al. 2001) and the Global Land Cover Database (GLC) 

(Bartholomé and Belward 2005) by USGS,  the Land Cover Classification System 
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(LCCS) by FAO (Di Gregorio and Jansen 2000) and the Globcover classification 

(Arino et al. 2007) by ESA. However, classifications based on the Anderson scheme 

separate natural from human components of systems, largely ignoring how those 

interact in coupled urban environments (Cadenasso, Pickett and Schwarz 2007). The 

urban environment being the product of interactions between human and natural 

mechanisms (McIntyre, Knowles-Yánez and Hope 2000; Naveh 2001) is poorly 

depicted by traditional classifications of land use land cover.  

In the United States cities have been characterized through different classification 

schemes based on population thresholds, adjacency to a range of city sizes and degree 

of urbanization (Butler and Beale 1994; Cromartie and Swanson 1996; Ghelfi and 

Parker 1997). Hugo, Champion and Lattes (2003) proposed a classification of 

settlements that combines settlement size, population density and accessibility as a 

way of capturing the multi-dimensional nature of the city.  

Research in public health examining the impacts of urbanization on human health 

has approached classifications of the urban context from a variety of angles. 

Continuous scales measuring urban-ness have been proposed based on a combination 

of variables such as population size and density, predominance of economic activity 

and access to services (Adair, Vanderslice and Zohoori 1993; McDade and Adair 

2001; Dahly and Adair 2007; Van de Poel, O’Donnell and Van Doorslaer 2009). 

Studies have classified the built environment based on details about housing and 

neighborhood characteristics collected from a variety of surveys (Caughy, O’Campo 
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and Patterson 2001; Weich et al. 2001). Remote sensing applications have been 

proposed as an efficient alternative to delineate urban areas based on detection of the 

built environment (Tatem and Hay 2004; Weeks et al. 2004).  

Studying urbanization in Europe, Antrop (2004) describes the diffuse transition 

between urban centers and the countryside as a complex combination of land uses 

with diverse and fragmented morphology. This heterogeneous transition zone that 

extends between urban and rural places is not captured by any settlement 

classification (Hugo, Champion and Lattes 2003) and remains to be further studied.  

The transition of urban environments into the countryside has been studied by 

ecologists who are interested in identifying changes in habitats through an urban 

gradient (Blair 1996; Blair and Launer 1997; Niemelä et al. 2002; Kühn and Klotz 

2006) and also by remote sensing specialists who are interested in capturing spatial 

patterns of urban growth (Luck and Wu 2002; Weng 2007; Yang et al. 2010). Studies 

in urban landscape ecology have proposed alternative characterizations of the urban 

environment that incorporate measures of fragmentation and dispersion with the goal 

of examining habitat fragmentation and its impacts on ecological function (Alberti 

2005; Breuste, Niemelä and Snep 2008).  

Studies interested in understanding patterns of urban growth have proposed the 

use of urban gradients instead of traditional land cover/land use classifications of 

urban spaces. Continuum classifications of multi-date satellite imagery provide 

detailed information about environmental changes and their links to urbanization 



28 

 

(Clapham Jr 2003). A continuous urban context can be portrayed through a 

combination of proportions of land cover and population characteristics (Weeks, 

Larson and Rashed 2003; Weeks 2003; McDonnell and Hahs 2008) or as a 

combination of measures of landscape composition and spatial configuration 

extracted from landscape metrics and socio-economic indicators (Weeks, Larson and 

Fugate 2005; Hahs and McDonnell 2006; Andersson et al. 2009; Toit and Cilliers 

2011).  

Fewer studies have extracted measures of degree of urbanization exclusively 

based on the morphological characteristics of the environment. Hung, Chen and 

Cheng (2010) combined fractions of built land cover with a normalized vegetation 

index to create an urbanization index that permitted them to compare degrees of 

urbanization between Tokyo, Kyoto and Taipei.  

Classification of the urban transition into categories is an alternative to the 

continuous approach to measuring degree of urbanization. Using very high resolution 

imagery, Cadenasso et al. (2007) proposed a classification that captures the 

heterogeneity of urban systems by combining details about buildings, vegetation and 

surface materials to study urban ecosystem’s function. The high ecological resolution 

classification for urban landscapes and environmental systems (HERCULES) defines 

five classes: coarse textured vegetation, fine textured vegetation, bare soil, pavement 

and buildings, where buildings are further subdivided into different types. 
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At regional scales and with less detail about individual features, moderate 

resolution imagery has been successfully used to identify urban transition patterns 

and generate meaningful categorical classifications. Van de Voorde, Jacquet and 

Canters (2011) combined ratios of built land cover with measures of spatial 

composition through a neural network classifier producing a detailed land use map of 

Dublin. The resulting land use map allowed them to differentiate the dense urban core 

from medium and low density residential and activity areas. 

Through a decision tree classifier Rashed et al.(2001) used proportions of 

different land covers to successfully differentiate agricultural areas, recreation areas, 

newly developed land, central business district, and residential areas of high and low 

socio-economic status in Cairo. The decision tree classifier is a non-parametric 

method that deals efficiently with numerical and categorical data, making it a suitable 

approach to classify urban context based on imagery extracted variables such as land 

cover and measures of texture and morphology from different data sources.  

4. Monitoring urban context in Ghana 

One of the major differences between urbanization as it has taken place in the 

global north compared to how it is taking place now in the global south is that in the 

south it seems to be happening disjointedly from economic growth (Cohen 2004). 

This means that in the least developed countries urban growth is not accompanied by 

the much needed development of infrastructure, particularly in smaller towns and 
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intermediate cities where resources are scarce (Montgomery 2004). This study’s 

hypothesis is that the lack of infrastructure combined with rapid urbanization results 

in heterogeneous and complex urban landscapes. Such a hypothesis has yet to be 

explored in detail in Sub-Saharan Africa. 

Research on urbanization in Sub-Saharan Africa has mostly focused on portraying 

the characteristics of urban expansion. Aerial photography was used to quantify urban 

growth between 1957 and 2009 in the urban fringe of the city of Bahir Dar in 

Ethiopia, finding that as the city expands it is absorbing large swaths of agricultural 

areas (Haregeweyn et al. 2012). Landsat imagery was used to monitor urban growth 

between 1976 and 2000 in Nairobi, Kenya, finding that urbanization and sprawl 

follow major transportation axes (Mundia and Aniya 2005). Satellite imagery and 

aerial photography were used to map patterns of urban growth between the mid-fifties 

and 1998 in Dar es Salam, Tanzania, finding that urban growth followed infill 

patterns rather than expansion patterns (Briggs and Mwamfupe 2000) and that urban 

poverty is driving important land use changes in peri-urban areas (Kombe 2005).  

In Ghana, urbanization is spreading at fast pace. The 2010 Census of Population 

and Housing revealed that more than half of the country’s population resided in urban 

areas, a figure that the UN projects to reach three quarters by 2050. Ghana Statistical 

Service estimates that population in Greater Accra increased from under 1.5 million 

in 1984 to almost 3 million in 2000, a number that reached the 4 million mark in 

2010. However, urbanization is taking place not only in the capital and major cities, 
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but also in smaller settlements both close and far away from cities (Moller-Jensen and 

Knudsen 2008).  

Studies of land cover and land use change in Ghana have found that migration is 

linked to decreasing woodlands in northern Ghana (Braimoh 2004; Pabi 2007), that in 

the Western region the most predominant changes are linked to mining, farming, 

lumbering, fuel wood collection and urbanization (Kusimi 2008), and that in the 

Accra region urbanization is the major driver of landscape transformation (Yorke and 

Margai 2007). In Accra, urban expansion was mapped between 1985 and 2002 with 

Landsat imagery, showing a fast and unplanned spread of the city into its hinterland 

(Møller-Jensen and Yankson 1994; Møller-Jensen, Kofie and Yankson 2005). 

Yeboah (2003) describes the emergence of higher-quality residential sprawl in the 

peri-urban and rural localities adjacent to Accra’s metropolitan area. Even though the 

region is going through a fast urbanization process, researchers have not yet 

examined the diversity of spatial patterns that are being brought about by rapid urban 

growth. 

B. Urban context, household composition and fertility 

Urban growth is directly the product of population changes, but underlying that 

are the societal transformations that bring changes in infrastructure, economic, 

political and cultural activities (Lattes, Rodríguez and Villa 2002). While the 

morphology of cities can be detected with remote sensing techniques, the complexity 
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of the urban context can only be understood through the combination of landscape 

and population characteristics (Pumain 2004). 

Research linking population dynamics with land cover and land use has mostly 

focused on deforestation in frontier settings (De Sherbinin et al. 2008).The 

connection between land cover land use change and household lifecycle was explored 

in the northern Ecuadorian Amazon by Barbieri, Bilsborrow and Pan (2005) finding 

that population growth in these rural areas can be directly linked to fragmentation of 

land holding. In the same region, Carr, Pan and Bilsborrow (2006) found that fertility 

levels dropped significantly in the frontier setting as migrants settled, diversified their 

livelihoods and acquired assets. Moran, Siqueira and Brondizio (2003) found a 

significant association between deforestation and age structure of settlers in the 

Brazilian Amazon, while Van Wey, D’Antona and Brondizio (2007) examined the 

relationship between land cover and land use change and household composition 

discovering that the number of women and children in the household has a significant 

effect on land use land cover change.   

Weeks et al. (2004) examined the variability in fertility levels in Cairo using 

contextual variables extracted from satellite imagery, finding that much of that 

variability was explained by a combination of socio-economic and landscape 

characteristics of the urban environment. In Accra, Weeks et al. (2010) combined 

satellite imagery with socio-economic indicators to delineate neighborhoods by 

fertility patterns, finding an important spatial trend in the association between 
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delaying marriage and lower fertility levels. In Sub-Saharan Africa reproductive 

decisions are highly influenced by the family context (Caldwell and Caldwell 1987; 

Lesthaeghe 1989), a connection that is less apparent in the city where urban living 

arrangements are starting to replace traditional household composition (Weeks et al. 

2010). However, rapid urban growth combined with rising urban poverty in the 

region is generating heterogeneous urban environments inhabited by people with a 

wide variety of lifestyles.   

In the early 1970s, Brand (1972) described how even as the city of Accra grew, 

traditional lifestyles persisted within the city. His paper on spatial organization of 

residential neighborhoods in Accra classified neighborhoods based on the degree of 

modernization of enumeration areas, identifying bourgeois migrant communities and 

urban villagers as the extremes. In his paper, Brand (1972) attributes modernization to 

education, lower reproductive levels and contact with western culture through non-

African in-migration. These characteristics of modernization can be interpreted as 

demographic characteristics of a population moving through the demographic 

transition, catching up with both the urban and fertility transitions. Caldwell and 

Caldwell (1997) described the export of western social systems and the ramification 

of ideas that accompany it as key triggers of fertility decline. 

Industrial societies facing a lower demand for agricultural labor and a higher 

demand for better education have seen a decline in the economic value of children 

(Bongaarts and Watkins 1996), and studies in developing countries have established a 
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correlation between higher incomes and lower fertility rates (Bollen, Glanville and 

Stecklov 2002; Bollen 2007). However, this correlation has not been able to explain 

the fertility behavior of people in many parts of the developing world (Mason 1997). 

Research in Sub-Saharan Africa has shown that reproductive decisions are highly 

influenced by social context, meaning that fertility transitions cannot be purely 

explained by indicators of socio-economic growth (Lesthaeghe 1989). Kingsley 

Davis’ (1963) theory of demographic change and response emphasizes the 

importance of social structure in shaping demographic behavior. Fertility decline, as 

Davis posits, results from changes in lifestyles characterized by marriage 

postponement, increased use of contraception and migration to the city. These 

lifestyle changes identified by Davis are embedded in a spreading urban way of life.  

As just noted, fertility transitions are influenced by the diffusion of modern 

methods of birth control, a process that takes place through social networks and 

communication media (Reed et al. 1999). In developing countries, Bongaarts and 

Watkins (1996) explain that reproductive decisions are highly influenced by levels of 

social interaction. Early adopters of fertility control tend to be more educated urban 

settlers, and this behavior spreads to rural areas through communication networks 

(Casterline 2001). In rural Egypt, Entwisle et al. (1989) showed that rural fertility 

rates are highly influenced by the structural characteristics of villages and Weeks et 

al. (2000) illustrated spatial diffusion effects in the use of contraceptives around rural 

villages through the study of the spatial distribution of fertility rates. In West Africa, 

Addai and Trovato (1999) mention the prevalence of a high ethnic fertility 
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characterized by a cultural background that promotes high reproductive expectations. 

Fertility levels that seem to be strongly influenced by this ethnic component are 

susceptible to a process of structural assimilation, where assimilation is defined by 

increasing levels of education, later marriages and a stronger female presence in the 

labor force (Goldscheider 1971; Weeks et al. 2004). Research in Sub-Saharan Africa 

has found that universal schooling (Caldwell and Caldwell 1997; Lloyd, Kaufman 

and Hewett 2000), delaying marriage (Bledsoe and Cohen 1993; Cohen 1998; 

Garenne and Joseph 2002) and access to family planning (Caldwell and Caldwell 

1997; Cohen 1998) are associated with fertility onsets. Nevertheless, studies have 

found that increasing use of family planning in Sub-Saharan Africa doesn’t 

correspond to a reduction in reproduction expectations as much as it does to an 

increase in the practice of spacing pregnancies (Caldwell, Orubuloye and Caldwell 

1992; Bledsoe and Hill 1998; Cohen 1998).  

Even though urbanization has been regularly linked to fertility decline (Mason 

1997), the density and diversity of cities in the developing world bring along a 

diverse set of reproductive strategies that generate a wide range of fertility levels 

(Montgomery 2003). In Cairo, Weeks et al. (2004) showed that higher fertility levels 

in the city are comparable to those found in rural Egypt. In Accra, Weeks et al. (2010) 

found that much of the variability in fertility levels within the city corresponds to the 

gap between dropping fertility levels of younger women delaying marriage and 

married women with much higher reproduction levels. Reproductive decisions in 

Sub-Saharan Africa are highly influenced by religion (Caldwell and Caldwell 1987) 
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and family systems (Caldwell 1996). In Ghana, Gyimah et al. (2008) have shown that 

there is a connection between a couple’s religion and its level of fertility, such that 

couples belonging to traditional African faiths have higher fertility rates than Muslim 

and Christian couples. Kinship represents the foundation of the organization of 

traditional groups in Ghana as it defines clans at the regional scale and lineages at 

local scale (Nukunya 2003).  

In West Africa, lineages are characterized by their reverence for ancestry and 

lines of descent. Elders in these traditional societies are not only respected by the 

young, they are supported by them as an obligation to the survival of the lineage. In 

this region, the connection to the lineage of descent prevails over the conjugal bond 

as spouses remain part of their lineage of origin even after marriage (Caldwell 1996). 

Studies in the region have found that the characteristics of the social organization of 

the family have an impact on reproduction decisions. Takyi and Dodoo (2005) found  

that in Ghana there is a stronger association between women’s reproductive 

preferences and their effective use of contraception in matrilineal ethnic groups 

compared to patrilineal ones, a result that indicates important differences in the role 

females play in household arrangements between matrilineal and patrilineal lines of 

descent.  

The power of the lineage is particularly evident in traditional living arrangements 

where nuclear families are weakened by the primacy of the kin (Caldwell and 

Caldwell 1987). The line of descent is particularly important in defining patterns of 
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residence and household composition. In Ghana, as in much of West Africa, living 

arrangements commonly correspond to extended family units. In the case of kinship 

families, the definition of a lineage as patrilineal or matrilineal plays a major role in 

determining where the family members reside. Even though patrilineal lines of 

descent prevail in the rest of Africa, Ghana is predominantly matrilineal when it 

comes to descent patterns. The Ashanti or Akan, the largest ethnic group in the 

country, is a matrilineal society. They are followed in numbers by bilateral descent 

groups such as the traditional kingdoms of Gonja, Dagomba and Wala. Patrilineal 

lines of descent are the least common, found in northern tribes such as the Tallensi 

and southeastern societies such as the Ga and Adangme (Nukunya 2003).  

Patrilineal societies tend to be virilocal, meaning that the family settles in the 

husband’s compound.  Exceptions are quite common as in the case of the Ga, where 

men and women live in different compounds with boys moving out of the female’s 

compound at puberty (Nukunya 2003). Matrilineal societies, on the other hand, are 

generally matrilocal which means that in most cases men and women will also live in 

different compounds and children are generally not allowed to live with their fathers 

(Nukunya 2003). In effect, children’s residential arrangements are very diverse in this 

region, compounded by the importance of the practice of fosterage. This common 

practice allows parents to send their children to be raised in a different household 

(Caldwell 1996), usually with a lineage/family member. Lineages, as we can see, 

define a variety of living arrangements, household sizes and structures. Household 

structure has been linked to fertility from different perspectives. Studies have found 
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that household size correlates positively to fertility (Bongaarts 2001), couple 

characteristics relate to reproduction rates (Oheneba-Sakyi and Takyi 2001), while 

polygamy has been associated with lower fertility rates (Bongaarts, Frank and 

Lesthaeghe 1984; Dodoo 1998). Research focusing on living arrangements has found 

that parent-child co-residence plays a role in defining reproduction decisions 

(McDaniel and Zulu 1996) and female co-residence with a family member of the 

same generation has a negative relationship to birth rates (Moultrie and Timus 2001).  

Ruggles and Heggeness (2008) indicate that in developing countries patterns of 

inter-generational co-residence are among the most common types of living 

arrangement. In Sub-Saharan Africa Adepoju and Mbugua (1997) classified 

households as nuclear or extended, further classifying extended as three generation, 

kinship family or polygamous households.   

In developing countries, the social changes brought by urbanization and 

industrialization are associated with a shift from tribal family patterns to nuclear 

conjugal families (Goode 1963). With rapid urbanization and the spread of the urban 

way of life, the ethnic component that has traditionally shaped Sub-Saharan African 

household composition is subject to a certain degree of assimilation (Lesthaeghe 

1989; Weeks et al. 2004). This study investigates the connection between the 

characteristics of the social organization of the household and the landscape 

characteristics that define urban spaces. Of particular interest is establishing how the 



39 

 

composition of households interacts with heterogeneous urban landscapes and how 

those in turn correlate with varying fertility levels. 

Decreasing mortality levels are considered to be an important precondition for 

fertility decline (Davis 1963; Reher 2004), a condition that is first met in the city, 

where infrastructure and services are concentrated. In Ghana, migration to the city 

and the process of assimilation to its lifestyle has been shown by White et al. (2005) 

to lower reproduction levels. Moreover, Caldwell (1967) associated regional 

differences in fertility attitudes to the predominance of rural or urban population. 

Southern Ghana, with lower rural populations than the north, had a clear tendency for 

lower fertility, whereas the more traditional and rural north experienced higher 

fertility levels. Bongaarts and Watkins (1996) explain that communities that are 

isolated from social interaction see slower fertility declines than those that are 

integrated through multiple channels. The hypothesis guiding this research posits an 

association between the physical characteristics of urban areas, family/household 

structure and fertility outcomes.  
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Through the use of remote sensing, image processing techniques and landscape 

metrics, a detailed indicator of the physical characteristics of the urban context is 

generated. This measure of urban context was then compared to population 

characteristics in order to identify the association between degree of urbanization and 

drivers of fertility decline.  

A. Study area  

Urbanization is spreading at a fast pace in Ghana. The 2010 census by Ghana 

Statistical Service (GSS) estimated that more than half of the country’s population 

resided in urban areas, a figure that is projected to reach three quarters in 2050 by the 

United Nations Population Division. GSS estimated that population in Greater Accra 

increased from under 1.5 million in 1984 to almost 3 million in 2000. This rapid 

growth in urban population translates into dramatic changes in LULC.  

The study area is located in southern Ghana, consisting of 18 districts covering all 

of the Greater Accra Region (which comprised 5 districts in 2000) and 13 adjacent 

districts in the Central, Eastern and Volta regions in the year 2000 (Figure 1). The 

coastal regions of Ghana have seen a steady increase in population growth and 

urbanization as Accra’s metropolitan area attracts a steady flow of migrants in search 

of opportunities, but also as smaller intermediate cities such as Cape Coast, Takoradi, 

and Tema have seen important population expansions. The study area includes Accra 

and Tema, and their metropolitan fringe, periphery and hinterland. The districts 

III. Study area and Methods 
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selected for this study stretch over portions of Accra’s neighboring regions defined 

here as the capital’s extended area of influence, which is composed of a diverse urban 

landscape.  

 

Figure 1: Study area 
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B. Defining the urban context  

1. Identifying built and vegetation land cover  

Urban context is characterized using a uniform grid covering the study area 

through the use of satellite imagery and geographic information system (GIS) 

techniques (Figure 2).  Landsat imagery was used to classify built and vegetation land 

cover and was combined with ERS-2 radar imagery in order to generate a 

classification of degree of urbanization.  

 

 

 

 

 

 

 

Figure 2: Flow chart for urban context classification 

 

A cloud-free 30 m resolution Landsat ETM+ image captured for path 193 and row 

56 in December 26
th

 2002 was selected (Figure 3). Pre-processing of the image 

included masking water bodies and sand flats using high resolution imagery from 
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Google Earth and masking fire scars using a supervised classification of a principal 

components transform image (Hudak and Brockett 2004). 

 

Figure 3: Study area overlaid on false color infrared Landsat ETM+ captured 

December 26
th

 2002. Census district boundaries delineated as white polygons. 

The resulting pre-processed image with six (all multispectral except thermal 

infrared) wavebands was analyzed through spectral mixture analysis based on Ridd’s 

(1995) VIS model. End-members or pure classes were selected from this image with 

the assistance of a Pixel Purity Index (PPI) to identify the images extreme spectral 

features. Clusters of pixels with high PPI were identified and visually compared to 
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pan-sharpened and high spatial resolution imagery from Google Earth in order to 

select end-members. The final group of end-members selected included one pure 

signature each for green vegetation, non-photosynthetic vegetation, soil, impervious 

surface and shade.  

SMA models estimated different combinations of proportions of the selected end-

members for each pixel. The algorithm constrains the resulting fractions to sum to 1 

for each pixel, while each individual fraction has to be in the 0 to 1 interval (Roberts, 

Batista, et al. 1998). Root mean square errors for the resulting SMA models were 

assessed in order to determine the most efficient combination of end-members for the 

detection of impervious surfaces and vegetation cover. The resulting proportions were 

classified into vegetation and built land covers using threshold classifiers. Pixels with 

more than fifty percent impervious surfaces were automatically classified as built.  

Resulting SMA proportions showed that within urban areas shade played an 

important role in capturing building shadows and dark pavement. Large settlements 

were delineated through visual inspection of a pan-sharpened Landsat ETM+ image, 

and pixels found within those areas with proportions of over fifty percent shade and 

twenty five percent impervious were classified as built. Pixels modeled as having 

more than fifty percent vegetation were classified as vegetation cover. Results from 

SMA indicated that shade is also associated with vegetated areas where trees create 

substantial amounts of shade. A normalized difference vegetation index (NDVI) was 

calculated and compared to the proportions of vegetation and shade produced by the 
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SMA confirming the overlap of vegetation and shade in heavily vegetated areas. In 

order to capture the portion of shade found within the vegetation cover pixels with 

more than fifty percent shade and twenty five percent vegetation cover were classified 

as vegetation. The resulting product is a 30 m resolution raster land cover map of the 

study area containing built, vegetation and other categories.  

Errors in the SMA-based land cover map were assessed relative to a land cover 

and land use map created by the Center for Remote Sensing and GIS applications 

(CERSGIS) at the University of Ghana, Legon. The land cover map created by 

CERSGIS is a product of heads-up digitizing (i.e., visual interpretation and manual 

digitizing) of Landsat 7 ETM+ imagery from 2000. The classes in the LCLU map 

generated by CERSGIS were aggregated in order to have two comparable built and 

vegetation classes. A stratified random sample of two thousand and five hundred 

points was generated over the study area and the corresponding land cover types from 

the SMA classification were compared to the CERSGIS land cover map. Given the 

relatively small proportion of the study area that is covered by impervious surfaces, 

the built land cover class was oversampled in order to produce a representative 

measure of accuracy. Five hundred points were collected for the built class, 1200 

were collected over the vegetation class and 800 were collected for the other class. 

Given the scarcity of high resolution reliable reference data we should note that our 

error assessment corresponds more to an assessment of agreement between two 

independent land cover and land use classifications than to a rigorous accuracy 

assessment. We assume that by combining visual interpretation and field work 
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validation the CERSGIS classification represents a valid reference of the 

characteristics of land cover and land use. However we don’t have access to any 

measures of accuracy that would validate our assumption. Results from the error 

assessment are discussed in the results section. 

2. Extracting settlement texture from radar imagery 

ERS-2 radar imagery is collected in the C microwave band (5.6 cm) with vertical 

transmission and vertical received polarization, yielding 12.5 m resolution images. 

ERS-2 imagery covering the study site was requested from the European Space 

Agency for three orbits: 18370 collected in October 1998, 19601 collected on January 

1999 and 41373 collected on March 2003 (Figure 4). 
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Figure 4: ERS-2 SAR image captured October 25
th

 1998, January 19
th

 1999 and 

March 20
th

 2003 for the Ghana study area. 

Ground range images were pre-processed using the NEST toolbox developed by 

the European Space Agency. Pre-processing of the radar imagery included: terrain 

correction, radiometric normalization and speckle reduction filtering. A range 

Doppler terrain correction algorithm was used for terrain correction and radiometric 

normalization using 30 m resolution Global Digital Elevation Model (GDEM V2) 

derived from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) satellite sensor and DELFT precise orbit files. A SAR 

simulation terrain correction was created using the same digital elevation model in 

order to generate a layover mask. The terrain corrected SAR image and the layover 
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mask were closely inspected against high resolution imagery (Google Earth) and a 

DEM in order to verify that areas with terrain distortion were excluded from the 

imagery.  

Research in settlement mapping has shown that radar imagery is particularly 

useful in areas with little terrain where background classes can be defined as flat 

undeveloped surfaces with low radar returns against which artificial structures with 

high returns easily stand up (Haack and Slonecker 1994). Through visual inspection 

areas located at higher elevations were identified as irregular bare rock formations 

generating mixed returns and foreshortening distortions which appeared to be missed 

by the terrain correction. After close examination of the radar backscatter against 

optical imagery the decision was made to expand the layover mask in areas located 

above 200 m of elevation using a 200 m buffer to remove any remaining 

foreshortening distortions. The expanded mask helps to ensure that the radar 

backscatter captured by the sensor is minimally influenced by the radar beam 

interacting with the terrain, but rather is a product of its interaction with man-made 

structures. Given that the study area is mostly flat the masked sections of the imagery 

are limited to scattered ridges in the northern portion of the study site. Examination of 

optical imagery indicates that the masked sections do not coincide with major 

settlements. 

A refined Lee filter was used to reduce speckle noise generated by interference of 

individual scatterers. The refined Lee filter examines variance in a seven by seven 



49 

 

window and establishes a threshold that detects edges.  A measure of texture was 

extracted from the filtered radar images using a 9 x 9 moving window to estimate the 

standard deviation of the radar backscatter. The standard deviation texture image was 

then smoothed using a 3 x 3 moving window in order to remove outliers. The 

smoothed image was then rescaled from 32 to 16 bit to reduce pixel range. The 

resulting variance of radar backscatter was used as an indicator of spatial composition 

of the built environment, where heterogeneous returns are associated with complex 

artificial landscapes such as man-made features characteristic of settlements. The 

rescaled SAR texture is then visually compared against a range of settlement sizes 

throughout the study area in Google earth in order to define a threshold of texture that 

matches to populated areas  The threshold used to classify the radar texture as built or 

non-built classes was selected following a supervised classification approach. Areas 

of interest (AOI) were digitized over high resolution imagery on Google Earth for a 

sample of varying size settlements and the corresponding measures of texture were 

examined selecting the minimum texture value matching the reference settlements of 

200. 

Errors in the radar based built land cover map were assessed relative to the land 

cover and land use map created by the Center for Remote Sensing and GIS 

applications (CERSGIS) at the University of Ghana, Legon. The built class extracted 

from radar texture was compared to the aggregated built classes (non-biotic 

constructed surfaces) from the CERSGIS land use land cover map for an independent 

stratified random sample of 2500 points, oversampling the built class given its limited 
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coverage. 1600 points were drawn from the non-built class and 900 points were 

drawn from the built class and the agreement-disagreement of the two classifications 

was assessed for the points. 

  

3. Landscape metrics of urban and vegetation patches 

Built and vegetation land covers extracted from SMA (section 3.2.1) were 

overlaid on a series of uniform grid cells and class and landscape metrics were 

calculated for the two land cover classes at the cell level in order to evaluate land 

cover fragmentation. Six different grid cell sizes were used to estimate land cover 

fragmentation generating six different measures of urban context, which were then 

compared. Landscape metrics were estimated for cell sizes of 14400 meters (480 by 

480, 30 m pixels), 7200 meters (240 by 240, 30 m pixels), 3600 meters (120 by 120, 

30 m pixels), 1800 meters (60 by 60, 30 m pixels), 900 meters (30 by 30, 30 m pixels) 

and 450 meters (15 by 15, 30 m pixels) (see Figure 5). 
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Figure 5: Three different grid cell sizes overlaid on a map of district 

boundaries 

Built and vegetation patches were analyzed for each cell (at each grid cell size) 

with the goal of examining degree of fragmentation, dispersal and complexity 

throughout the urban transition. The metrics were calculated using FRAGSTATS 

software (McGarigal and Marks 1995), in combination with the R statistical package. 

Heterogeneity of the urban context was quantified using percentage of built land 

cover and density of built and vegetation patches. The complexity of urban patches 

was assessed through estimates of area weighted mean patch fractal dimension: 

 Eq. 1 
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where m is the number of patch types, n is the number of patches of a class,     is 

the perimeter of the patch ij,     is the area of patch ij and A is the total landscape area 

(Herold, Scepan and Clarke 2002) 

In addition to the previously described metrics, an index of contagion was used to 

evaluate adjacency and compactness in the urban landscape:  

where m is the number of patch types (classes), pi is the proportion of the 

landscape occupied by patch type (class i) and gik is the number of adjacencies (joins) 

between pixels of classes I and k  (O'neill et al. 1988; Herold, Scepan and Clarke 

2002).  

Class and landscape metrics estimated for each cell size unit of analysis were then 

converted into raster files with the same resolution as the size of the unit of analysis. 

Each cell size had one raster file for percent built land cover, built patch density, built 

area weighed mean fractal dimension, contagion index, vegetation patch density and 

vegetation area weighed mean fractal dimension (Figure 6). 
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Figure 6: Measures of class and landscape fragmentation for 3600 m cell 

4. Decision tree classifier 

Decision tree classifiers allow the combination of different input layers into a 

single classified product by recursively splitting the data until every leaf is assigned 

to an independent class (Figure 7). Decision tree classifiers were used to combine 
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landscape metrics calculated on the SMA-based classification of built and vegetation 

land covers with texture extracted from the SAR imagery for the six different units of 

analysis.  This classification technique takes advantage of the spectral characteristics 

of the optical imagery, the pattern characteristics of the landscape metrics and the 

structural characteristics of the radar imagery to generate a range of urban context 

classes that describe the physical characteristics of the landscape.  

 

 

 

 

 

 

 

Figure 7: Recursive splitting in the decision tree classifier defined by test rules that 

partition the data into individual leafs or classes 

The radar based texture measure detailed in section 3.2.2 was overlaid onto 

each one of the grid cell units of analysis and an aggregated measure of standard 

deviation was extracted for each cell (Figure 8).Cell level measures of landscape 

fragmentation and cell level aggregated radar texture were used as inputs for the 

decision tree classifier to generate a pattern based classification of the urban context. 
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Figure 8: a) 3600 meter cell overlaid onto radar texture (9x9 SD) b) Zoom to 3600 

meter cell overlaid onto radar texture (9x9 SD) c) Standard deviation of radar texture 

for 3600 meter cells  d) zoom to standard deviation of radar texture for 3600 meter 

cells 

The frequency distributions of the aggregated measures of fragmentation and 

radar texture were examined for each one of the scales of analysis (i.e., grid cell sizes) 

and were split in two (high and low values) using a natural breaks classification 

scheme that minimizes within-class variance and maximizes between-class variance. 

The natural break split for each variable was used to define the rules for the decision 

tree classifier and the resulting subclasses were named and validated by examining 

the land cover characteristics of a set of representative cells for each one the classes 

in the urban context scheme. Decisions rules were defined for each one of the scales 

a b 

c d 
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of analysis with the breaks being determined by the characteristics of each frequency 

distribution.  

Urban context classifications were created for the six different units of 

analysis using two different classification schemes. Larger cell sizes (14400 and 7200 

m) with fewer cells were divided into six urban context classes: compact urban core, 

fragmented sub-urban, scattered settlement, sparsely populated, fragmented transition 

and unsettled land (Figure 9). The six class classification scheme is based on the four 

more basic pattern variables: percent impervious land cover, impervious land cover 

patch density, radar texture and vegetation land cover patch density. Given that the 

units of analysis are large enough to capture big sub-metropolitan areas measures of 

shape complexity and dispersion/interspersion were not used at these two scales.   

Smaller cell sizes (450 to 3600 m) with more numerous cells were divided 

into nine urban context classes:  compact urban core, fragmented large urban patches, 

dense and dispersed small urban patches, fragmented sub-urban, scattered 

settlements, sparsely populated, fragmented transition, fragmented unsettled and 

unsettled land (Figure 10). 
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Figure 9: Model of urban context classification scheme for 14400 and 7200 m 

cells  

In the case of cell sizes of 3600, 1800, 900 and 450 m, urban context was defined 

using all seven pattern variables including the measures of shape complexity and 

dispersion/interspersion. Smaller units of analysis, with more numerous cells, allowed 
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increasing the number of classes, widening the diversity of urban contexts identified 

by the classification scheme. Measures of shape complexity and 

dispersion/interspersion for these units of analysis differentiate small homogeneous 

sub-zones that can be attributed to different neighborhoods within cities. The 

classification scheme for the 450 to 3600 m cells expands on the one defined for 7200 

and 14400 m cells by subdividing both ends of the classification scheme based on 

shape complexity and dispersion/interspersion of built and vegetation patches. Based 

on a larger number of variables the classification scheme for the smaller cells 

identifies a wider range of transitional classes between the two ends of the urban 

context classification. 
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Figure 10: Model of urban context classes for 3600, 1800, 900 and 450 m 

cells 

It is important to mention that the rules used in the decision tree classifier were 

defined a priori from the analysis of each one of the relative measures of pattern. 

Given the lack of reference data pertaining to degree of landscape fragmentation, it 

was impossible to rely on an iterative process of training, pruning and validating the 
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decision tree. The validation of the classes consisted of examining in detail all 

measures of fragmentation for a sample of cells representing each of the urban 

context classes, then naming and ordering them according to their land cover and 

pattern characteristics. The resulting urban context maps for the six different scales of 

analysis were compared and the smallest cell size was selected for further spatial 

analysis.  

Errors of the urban context map for the 450 m cell map were assessed relative to 

the land cover and land use map created by CERSGIS at the University of Ghana, 

Legon. The two classification schemes had to be aggregated in order to make them 

comparable. The top five urban classes in the urban context map: Compact urban, 

fragmented large urban patches, dense and dispersed small urban patches, fragmented 

sub-urban and scattered settlements were aggregated into a single built class with the 

rest of the urban context classes defined as non-built and the non-biotic constructed 

surfaces from the CERSGIS map were aggregated into a single built class. All other 

classes were aggregated into a non-built class.  

C. Examining drivers of fertility throughout diverse urban contexts 

1. Census variables  

Data from the 2000 census at the enumeration area (EA) level (Figure 11ca) was 

assigned to towns outside of Accra (Figure 11 b) and EA centroids within the city of 
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Accra. The census data were then aggregated to the cell level used as units of analysis 

for the urban context maps from section 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: a) Enumeration areas from the 2000 census b) 450 m grid overlaid 

onto towns that were assigned EA level data 

Enumeration area boundaries defined by Ghana Statistical Service have very 

heterogeneous shapes and sizes, and are heavily influenced by the presence of 

settlements. Converting the census data from the EA level into a continuous grid 

allows generating units of analysis of comparable size and incorporates both rural and 

urban areas as a means for representing the entire rural-urban gradient. Variables 

measuring population characteristics, fertility levels and household composition were 

a 

b 
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aggregated to the cell level in order to model the association between household 

composition, fertility levels and urban context. 

2. Ordinary least square (OLS) regression 

Fertility levels were modeled through ordinary least squares (OLS) regression 

using household composition variables and urban context as explanatory variables of 

interest:  

where the dependent variable   is defined as an age standardized measure of 

children ever born to women of reproductive age (CEBz) at location i,     is a 

constant and     are the coefficients measuring the association between y and each 

independent variable    at location i. 

Living arrangement variables were created at the household level based on 

individual responses to the 2000 census and then aggregated to the cell unit. In order 

to identify different types of living arrangements, household members were assigned 

to different generations based on age thresholds and relationship to the head of 

household, allowing the identification of households with inter-generational co-

residence. Household composition is also affected by high levels of long- and mid-

term mobility of household members, where the absence of members is fairly 

 Eq. 3 

 Eq. 4 

      ∑        
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common. Thus, in addition to inter-generational co-residence, households were 

classified according to whether they were headed by women; whether a member’s 

usual residence was in a different district and whether the residence held foster 

children. The association between fertility, living arrangements and urban context 

was evaluated for the six different units of analysis and results were compared. The 

smallest unit of analysis (450 m cell) was chosen for further analysis given the detail 

captured for small area urban context and given that its size is closest to the median 

size of the enumeration areas. Within the study area EA sizes range between 2000 m
2
 

and 260 km
2
, with 45% of the EA’s areas falling below the 0.2 km

2
 represented by a 

450 by 450 m cell size.      

Regression analysis establishes unbiased linear estimations when the data meet 

assumptions of normality, homoscedasticity, linear associations and uncorrelated 

errors. In geographical analysis, the existence of spatial dependence deviates from the 

assumption of non-correlated errors in the data. The resulting residuals were analyzed 

for spatial autocorrelation in order to identify whether there is a spatial component 

unaccounted for in the regression analysis. Spatial autocorrelation was estimated 

through a global Moran’s I: 

where     is the deviation of an attribute for feature i from its mean     ̅ ,     

is the spatial weight between features i and j, n is the total number of features and  

 Eq. 5 
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    ∑ ∑    
 
   

 
   

  is the aggregate of all spatial weights. The spatial weights matrix was 

created using a K-neighbors approach where the five closest neighboring cells were 

defined as adjacent. 

Given that the residuals were found to be spatially autocorrelated, individual 

variables were tested for spatial dependence using both Global Moran’s    and the 

Getis and Ord   
 
 spatial autocorrelation statistic (Getis and Ord 1996).  

Where    is the attribute value for the feature j,     is the spatial weight between 

feature i and j, n is equal to the total number of features  ̅   
∑   

 
   

 
  and     

 √
∑   

  
   

 
   ̅   

Variables showing significant spatial dependence were then filtered using the 

Getis spatial filter (Getis and Griffith 2002), which isolates the spatial component 

from the variable. The spatially filtered variable   
  is based on the Getis and Ord   

 
 

statistic and is defined as: 

The filtered variable is the result of the comparison of the   
 
observed with its 

expected value given no spatial autocorrelation. The distance d is determined by 
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estimating the   
 
statistic at a series of increasing distances until spatial 

autocorrelation starts to decrease.  

An OLS regression is then run with the spatially filtered variables. Once again, 

the residuals are evaluated for the presence of spatial autocorrelation. 

 

3. Spatial lag and spatial error models 

Given that spatial autocorrelation was still found in the residuals of the spatially 

filtered variables OLS a spatial error autoregressive model was used to specify the 

spatial component within the regression analysis. In a spatial autoregressive model 

the spatial dependence found in the dependent variable can be formally modeled 

through either a spatial lag model or a spatial error model (Chi and Zhu 2008). The 

spatial lag model is defined as:  

 

Where y is the vector of response variables, x is the matrix of explanatory 

variables, w is the spatial weights matrix and ε is the vector of independent, not 

identically distributed error terms. The spatial error model on the other hand is 

defined as:  

 

 Eq. 8 

 Eq. 9 
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In the spatial lag model spatial autocorrelation is modeled through the association 

between the dependent variable and the spatially lagged independent variables, 

whereas the spatial error model incorporates spatial autocorrelation through the error 

term. The advantage of the spatial lag model is that it allows for the specification of 

spatial dependence in the variables included in the model, while the spatial error 

model assumes that spatial autocorrelation accounts for key explanatory variables not 

included in the model (Chi and Zhu 2008). A spatial error model is selected based on 

the diagnostics for spatial dependence estimated on the GEODA package, where the 

Lagrange Multiplier for the error model shows higher statistical significance than the 

one for the spatial lag model (Anselin 2004).  The spatial error regression is used to 

model fertility as a function of household structure and urban gradient. 

4. Geographically weighted regression 

Finally the association between fertility, household structure and urban context is 

evaluated for spatial heterogeneity through geographically weighted regression 

(GWR). Local parameters were generated through GWR incorporating spatial 

heterogeneity within the regression analysis as an added term in the equation 

(Fotheringham, Charlton and Brunsdon 2009). 

 Eq. 10 

 Eq. 11              ∑                

        



67 

 

Where         correspond to the coordinates of the ith point and k denotes the 

number of independent variables. GWR generates as many models as points included 

in the regression and the strength of the relationship between dependent and 

independent variables is affected by its neighbors, with: 

Where W corresponds to the weight assigned in each model to neighboring points, 

at the same time that neighboring points are defined by a kernel-based distance decay 

function. GWR is used to estimate the spatially varying strength of relationship 

between fertility, household structure and the urban gradient.  

The spatial analysis of the association between fertility, degree of urbanization 

and household composition was used to identify major spatial trends guiding the 

diffusion of fertility and urban transitions.  

 

 

 

 

  

 Eq. 12                                     
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A. Identifying built and vegetation land cover 

Built and vegetation land covers were mapped through spectral mixture analysis 

using five image end-members: green vegetation, non-photosynthetic vegetation, 

shade, soil and built environment. Image end-member selection was aided by a Pixel 

Purity Index that identified the image’s spectral features extremes as illustrated in 

figure 12. 

 

 

 

 

 

 

 

Figure 12: PPI and example of End-members 

Extreme features were then visually inspected and a series of end-member 

combinations were tested in un-mixing models. Through model testing, sources of 

land cover confusion were identified such as fire scars and dry bright soil or sand 

bars. The dark features of recent fire scars were consistently associated with shade 

IV. Results: Defining the urban context 
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end-members whereas bright soils and sand bars were associated with built 

environment end-members. In order to improve the accuracy of the SMA model areas 

with both fire scars and bright sand flats or soils were masked out. Fire scars were 

identified with a supervised classification using the three first principal components 

of the Landsat ETM+ image and then masked out. High spatial resolution imagery 

(Google Earth) was used to visually isolate problematic areas with bright soils and 

sand flats, those areas were manually digitized and masked out as well. 

Results from the final SMA model show that distinguishing soil and built land 

cover classes remain problematic given the similarity of both classes, but also given 

the high prevalence of mixing that occurs in cities of the developing world where a 

large share of the streets remains unpaved (Ridd 1995). Close examination of the 

spectral characteristics of end-members and resulting proportions indicate that 

multiple end-member spectral mixture analysis (MESMA) could improve the 

distinction of soil and built proportions.  

The resulting land cover proportions were classified based on thresholds, 

identifying pixels with a majority of proportion of impervious surfaces and vegetation 

as built and vegetation land cover. The resultant shade proportions image was 

visually inspected in order to assess shade in association with built features and 

vegetation. Results showed that within the urban context the shade class plays an 

important role in revealing building shadows and dark pavement features. Major 

settlements were visually delineated on high spatial resolution imagery and pixels 
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having high proportions of both shade and impervious surfaces were classified as 

built. SMA results pointed also to a connection between vegetation land cover and the 

predominance of shade, a link that suggests the significance of mixing of vegetation 

and shade in vegetated areas (Lu, Moran and Batistella 2003). Normalized Difference 

Vegetation Index (NDVI) was calculated and compared to the SMA-derived 

proportions and used in the identification of pixels having high proportions of shade 

and vegetation, which were classified as vegetation land cover. The final land cover 

map produced through SMA shows that Accra and Tema are merging into a single 

metropolitan area that dominates the urban context in the region. A network of 

smaller settlements can be seen spreading east-west following the coastline (Figure 

13a) and scattered mid-size towns, such as the town of Agona Swedru, extend inland 

following major roads (Figure 13 b and c). 

Errors in the SMA based classification of built and vegetation land covers was 

assessed by comparing them to the corresponding classes in the CERSGIS land cover 

map for a stratified random sample of points. As noted above, the non-biotic 

constructed classes in the CERSGIS map, which include rural and urban settlements 

and transportation ways, were all aggregated into a single built class. The aggregated 

vegetation class from the CERSGIS map included agricultural land, forest, savanna 

and shrub thicket plus a range of combinations of mixed land use. A comparison of 

the maps shows that there is a fair amount of disagreement (primarily apparent 

omissions) relative to the CERSGIS map, for both the built and the vegetation 

classes, with the biggest discrepancy for vegetation (Figure 14). The differences 
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found in vegetation extent can be linked to the fact that all vegetation types from the 

CERSGIS map were aggregated into a single class that includes large patches of 

savanna and mixed land use with dispersed fallow and shrub lands where dry 

scattered grassland were identified by the SMA as mostly bare soils. This discrepancy 

is particularly noticeable in the area that expands east of Accra towards the border 

with Togo. 

An examination of the agreement-disagreement tables in Tables 1 and 2 shows 

that the built and vegetation classification generated through SMA has fair agreement 

with the CERSGIS map with producer’s accuracies of over 60%. In the case of the 

built class we can see that the magnitudes of omission and commission errors are 

comparable between 13% and 15% (Table 1). 

 

a 
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Figure 13: a) Built (>50% impervious & >25% impervious+>50% shade) and 

Vegetation (>50% vegetation & >25% vegetation+>50% shade) land cover extracted 

from SMA b) Landsat ETM+ false color infrared zoom on the town of Agona Swedru 

c) Built and Vegetation land cover extracted from SMA zoom on the town of Agona 

Swedru. 

 

Figure 14: a) Built and vegetation land cover classified from SMA proportions b) 

Built and vegetation land cover aggregated from CERSGIS classes 

 

 

 

 

b c 

a b 
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Table 1: Agreement-disagreement table for the SMA based Built class 

  CERSGIS classification  

  Non Built Built Total Users accuracy 

SMA 

Class 

Non built 1933 67 2000 96.7 

Built 75 425 500 85 

Total 2008 492 2500  

 Producers accuracy 96.3 86.4   

 

The vegetation class on the other hand has a much higher omission of roughly 

40% that contrasts with a very low commission of 3% (Table 2). As it was mentioned 

earlier the magnitude of the omission indicates the prevalence of mixed pixels in 

areas where vegetation and other land covers such as bare soil are highly intermixed. 

Table 2: Agreement-disagreement table for the SMA based Vegetation class 

  CERSGIS classification  

  Non-vegetation Vegetation Total Users accuracy 

SMA 

Class 

Non-vegetation 553 747 1300 42.5 

Vegetation 38 1162 1200 96.8 

Total 591 1909 2500  

 Producers accuracy 93.6 60.9   
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B. Extracting surface texture from radar imagery 

ERS-2 synthetic aperture radar imagery was used to generate a measure of surface 

texture and used as a proxy measure for the presence of built artifacts. Pre-processing 

of the radar imagery included terrain correction, radiometric normalization and the 

generation of a layover mask to exclude areas with topographic distortion. A 9 by 9 

moving window was used to estimate the standard deviation of the radar backscatter 

in order to identify areas with heterogeneous returns which are associated with the 

built environment. Given that the radar imagery has a spatial resolution of 12.5 m 

single pixel spikes in the measure of texture could be associated with scattered 

individual buildings or artifacts which wouldn’t necessarily indicate the presence of a 

settlement. By using a 3 by 3 average window the effects of single pixel outliers are 

minimized, enhancing the identification of built areas that are large enough to be 

associated with a human settlement. Figures 15 b-c and d-e illustrate for the two 

towns of Agona Swedru and Agona Nyakrom the correspondence of the smoothed 

radar texture with the false color infrared Landsat image for 2002. 
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Figure 15: a) 3 by 3 average of radar texture (Standard deviation 9x9) b) 

Landsat ETM+ false color infrared zoom on the town of Agona Swedru c) 3 by 3 

a 

d e 

b c 

a 
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average of radar texture zoom on the town of Agona Swedru d) Landsat ETM+ false 

color infrared zoom on the town of Agona Nyakrom e) 2 by 3 average of radar texture 

zoom on the town of Agona Nyakrom  

The final radar texture was rescaled to 16 bit images and the rescaled images were 

classified into built and non-built classes (Figure 16a) based on a threshold defined 

through comparison with high resolution imagery from Google Earth. 
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Figure 16: a) Radar based built class b) Radar based built class zoom on the town of 

Kwame Adewe c) SMA based land cover classification zoom on the town of Kwame 

Adewe d) Google Earth image from the town of Kwame Adewe 2003 e) Radar based 

built class zoom on the town of Gomoa f) SMA based land cover classification zoom 

on the town of Gomoa e) Google Earth image from the town of Gomoa 2000 

Close inspection of the SMA based and radar texture based built land cover 

classes against Google Earth imagery indicates that the radar texture based class 

captures a wider range of settlement sizes in the study area (Figure 16b-g). The small 

towns of Gomoa and Kwame Adewe on figure 16 b-d and e-g illustrate the propensity 

of the radar based built class to detect small towns that are missed by the SMA based 

classification of the built class. While the built map extracted from SMA seems to 

have a fair amount of omission, the radar texture extracted built class, given its finer 

spatial resolution, is capable of identifying much smaller towns  

The resulting agreement-disagreement table (Table 3) shows that while the radar 

extracted built class has a user’s accuracy of 64.4 % it has a much higher producer’s 

accuracy of 91%. These results are not surprising since the radar imagery’s single 

band provides a limited picture of land cover characteristics. 

e f 

g 
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Table 3: Agreement-disagreement table for radar-based built class relative to 

CERGIS 2000 LCLU map 

  CERSGIS classification  

  Non-built Built Total Users accuracy 

Radar 

Class 

Non-built 1544 56 1600 96.7 

Built 320 580 900 64.4 

Total 1864 636 2500  

 Producers accuracy 82.9 91.2   

C. Measures of landscape structure  

Measures of landscape fragmentation were derived using the SMA-based 

vegetation and built land cover classes for a series of uniform grid cells. Given the 

wide range in size of enumeration areas an alternative uniform grid cell approach is 

proposed in this study to estimate landscape fragmentation. Landscape and class  

metrics were calculated for six different size units of analysis, 450 m, 900 m, 1800 m, 

3600 m 7200 m and 14400 m. A first look at the resulting class and landscape metrics 

shows that larger cells capture higher variances for most of the estimated metrics, a 

result that was expected. However in the case of the measures of built fractal 

dimension and index of contagion cells with the highest variance correspond to two 

intermediate cell sizes, 1800 and 3600 m and not the larger ones (Figure 17).  
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Figure 17: Comparing landscape metrics variance for different size units of 

analysis for the entire study area 

This result indicates that when it comes to measuring shape complexity and 

dispersion intermediate units of analysis fail to capture homogeneous regions while 

small and large units of analysis succeeded. When comparing the resulting spatial 

distributions of the measures of landscape fragmentation it is evident that a smaller 

unit of analysis (450 m) captures greater detail about structural arrangement than the 

intermediate and large size units of analysis (Figure 18, 19, 20 and appendix 1).  
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Figure 18: Landscape and class metrics for 14400 m cell unit of analysis 
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Figure 19: Landscape and class metrics for 1800 m cell unit of analysis 
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Figure 20: Landscape and class metrics for 450 cell unit of analysis 

D. Urban context definition 

Measures of landscape fragmentation were combined with the measure of radar 

texture using a decision tree classifier in order to generate a pattern-based 
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classification of urban context. Radar texture was aggregated to each one of the six 

units of analysis by estimating the standard deviation of the radar texture for each 

cell. The frequency distributions of each one of the seven variables were evaluated in 

order to determine a set of decision rules for the decision tree classifier. Given that 

the larger units of analysis have fewer cells in comparison to the smaller ones, two 

different sets of classifications schemes were selected. For 14400 and 7200 m cells, 

totaling 90 and 313 cells respectively, a six class urban context scheme was defined 

using four variables: percent of impervious land, impervious patch density, standard 

deviation of the radar texture and vegetation patch density (Figure 21). 

 

 

 

 

 

 

 

Figure 21: Decision rules for 14400 m cell units of analysis 

The first split in the decision tree was defined at 5% impervious land cover. A low 

threshold was selected for percent impervious land cover because of the relatively 

small portion of the study area that is covered by built surfaces (around 2% of the 

study area was classified as built based on the SMA proportions). The frequency 
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distribution of the landscape metric variables were inspected and partitioned in two 

(high and low values) using natural breaks for each distribution (Figure 22). Once 

cells went through the first split those above 5% built were further divided using a 

threshold of impervious patch density. Cells with higher percentages of impervious 

land cover and lower densities of impervious patches denote lower levels of urban 

fragmentation, where lower densities are the result of fewer larger impervious 

patches. On the other hand, higher densities of impervious patches for cells with 

significant proportions of built land cover indicate the prevalence of numerous small 

size patches associated with fragmented urban contexts. 

 

Figure 22: Partitioning of variables with natural breaks for 14400 m cells.  
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Cells with built land cover below 5% were further split using the standard 

deviation of the measure of radar texture, where high values indicate incidence of 

built structures. Cells with higher radar textures were further split based on their 

densities of built patches, classifying them into higher density scattered settlements 

and lower density sparsely populated areas. The last two categories correspond to 

cells with the lowest proportions of impervious land cover and the lowest values of 

radar texture, these cells were in turn split based on their vegetation patch densities. 

Cells with higher densities of vegetation patches were identified as fragmented 

transitional land cover where higher density is the product of a large number of 

smaller vegetation patches. On the other hand cells with lower densities of vegetation 

were identified as unsettled land where fewer large vegetation patches prevail.  

The final urban context classification for cells of 14400 m identified three out 

of the 87 cells as compact urban covering the most urban areas of Greater Accra and 

Tema, an additional three cells are classified as fragmented sub-urban in the outskirts 

of Greater Accra (Figure 23). Six cells are identified as scattered settlements on the 

banks of the Volta River, outskirts of Tema and an inland area covering the city of 

Koforidua in the eastern region. Areas classified as sparsely populated spread inland 

from the outskirts of Greater Accra and cover roughly 30% of the study area (25 

cells).  
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Figure 23: 14400 cell size urban context classification 

For the four smaller units of analysis (450 m to 3600 m) a nine class urban 

context classification scheme was defined using all seven analyzed variables: percent 

impervious cover, impervious patch density, fractal dimension of impervious 

surfaces, index of contagion, standard deviation of the radar texture, vegetation patch 

density and fractal dimension of vegetation patches (Figure 24). The variables were 

partitioned into high and low values using the natural breaks in each frequency 

distribution (Figure 25). 
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Figure 24: Decision rules for 450 m cell units of analysis 

 

Figure 25: Partitioning of variables with natural breaks for 450 m cells. 
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Even though the proportions of built land cover are higher for smaller units of 

analysis the share of cells with predominant built land cover remains low because of 

the relatively small area it covers in the study area. For that reason the same threshold 

of 5% impervious land cover was used as the first split in the decision trees created 

for 450 to 3600 m cells. Once cells were partitioned into lower and higher proportions 

of built land cover the latter ones were further partitioned based on the density of 

built patches. Cells with lower densities of impervious patches were identified as less 

fragmented urban areas where fewer large size built patches prevailed whereas higher 

densities were identified as areas with more numerous smaller size built patches. The 

less fragmented lower density urban patches were further split into compact urban 

and fragmented large urban patches based on the shape complexity described by the 

fractal dimension of built patches. Cells with lower built fractal dimensions indicate 

the predominance of simple shapes in the built environment, a sign of higher 

compactness. On the other hand higher fractal dimensions are associated with higher 

complexity in shapes, a feature that indicates fragmentation of the urban environment. 

The more fragmented higher density urban cells were further split into dense and 

dispersed small urban patches and fragmented sub-urban classes based on their 

contagion index. Higher contagion indices indicate that urban cells have larger size 

impervious patches, highly clumped together and with low levels of interspersion. In 

contrast lower contagion indices indicate that urban cells have smaller size 

impervious patches, highly dispersed with higher levels of interspersion, 

representative of fragmented sub-urban areas.  
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Cells with higher radar texture were identified from within the group of cells with 

low proportions of built land cover and those were further split into higher density 

built scattered settlements and low density sparsely populated areas. Cells with low 

proportions of impervious cover and lower values of radar texture were further split 

based on the density of vegetation patches. Cells with higher densities of vegetation 

patches are associated with higher fragmentation in vegetation with more numerous 

small size vegetation patches, while lower densities are associated with fewer larger 

vegetation patches characteristic of non-fragmented unsettled land. Finally the cells 

identified with fragmented vegetation were further split into fragmented transition 

and fragmented unsettled land based on the fractal dimension of vegetation patches. 

Cells with higher fractal dimensions indicate the predominance of complex shape 

vegetation patches pointing to higher levels of vegetation fragmentation while those 

with lower fractal dimensions indicate vegetation patches with simple shapes a sign 

of relatively low vegetation fragmentation. 

The 450 m cell classification of the urban context identifies almost 1000 out 

of the 58 000 cells as compact urban areas; these cells are located in Greater Accra 

and Tema, but also in the centers of major cities such as Koforidua and Winneba and 

major coastal and inland settlements (Figure 26).A similar number of cells are 

classified as fragmented large urban patches with most of those cells located within 

the central areas of major cities and settlements. Around 500 cells are identified as 

dense and dispersed small urban patches found closer to the outskirts of larger cities 

such as the area located between Accra and Tema. The fragmented sub-urban class is 
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restricted to the outskirts of large cities found almost entirely in coastal areas, where 

urbanization is spreading at a fast pace. Scattered settlements on the other hand 

spread around the periphery of intermediate towns, most of them inland. Cells 

classified as sparsely populated areas cover around 1200 cells and are scattered 

throughout the study area extending beyond the peripheries of consolidated towns. 

Finally, cells identified as transitional classes spread into unsettled land following a 

band pattern that expands beyond the periphery of settled areas.  

 

Figure 26: 450 m cells urban context classification 
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Comparing landscape metrics throughout the six different scales (appendix 2) we 

can conclude that smaller cell sizes capture more detail in terms of landscape 

structure. At the same time smaller units of analysis tend to have lower variances in 

measures of pattern which means that they tend to capture more homogeneous 

regions. The urban context map for 450 m cells was compared to the CERSGIS land 

use land cover map in order to assess the level of agreement between the two 

independent classifications. The five most urbanized classes in the urban context map 

were aggregated to represent a single built land cover class and compared to the 

aggregated non biotic constructed surfaces classes from the CERSGIS land use land 

cover map. An agreement-disagreement table was created by matching the land cover 

classes assigned to the random points from the urban context map and the CERSGIS 

classification (Table 4). Results show that the overall accuracy is over 65% with an 

omission error of only 5%. The higher commission error can be interpreted as a 

product of the discrepancy of scale in the data sources for the two maps and as a 

product of the difference in classes mapped. While the aggregated urban context 

classes represent a wide range of urban environments that include different 

combinations of mixed land use, the CERSGIS map is restricted to only capturing 

built surfaces. The prevalence of commission disagreement can be attributed in part 

to the differences in classification schemes used by the two independent 

classifications. 
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Table 4: Agreement-disagreement table for top five urban classes in urban context 

map relative to CERGIS 2000 LCLU map 

  CERSGIS classification  

  Non-built Built Total Users accuracy 

Urban context 

Classes 1-5 

Non-built 1564 36 1600 97.8 

Built 290 610 900 67.8 

Total 1854 646 2500  

 Producers accuracy 84.4 94.4   

 

The pattern-based urban context map integrates radar and optical imagery with 

measures of landscape metrics through the use of a decision tree classifier. This map 

is based on a nuanced definition of urban spaces based on landscape characteristics 

and provides a gradient-like approach to defining urban spaces. Results from the error 

assessments show that the SMA based built land cover classification alone does not 

capture the entire built environment in the study area. Differentiating land covers for 

mixed pixels combining soils and impervious surfaces with moderate resolution 

optical imagery has shown to be a difficult task, a problem that is very prevalent in 

urban environments of the developing world. Radar imagery provides a valuable 

complementary source of data for detection of man-made features; however as a 

single data source it fails to detect the full extent of the urban environment. 

Combining both sources of data allowed generating a more complete map of the built 

environment that captured a wider range of urban features. Finally, through the use of 
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landscape metrics this approach was able to capture in detail the diversity of urban 

patterns that characterize different urban contexts. To create this pattern-based urban 

context map required the definition of a uniform unit of analysis that represented 

homogeneous urban spaces. Comparing different size units of analysis allowed 

recognizing that smaller units tend to capture more homogeneous spaces while 

providing at the same time the maximum detail about spatial patterns.   
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The goal of this study is to determine the degree of association between urban 

context and demographic characteristics in the study area, and more specifically to 

examine the role played by the urban context in shaping drivers of fertility levels in 

southern Ghana. The uniform cell unit of analysis was defined as a solution to the 

problem of linking population and land cover data collected at different scales and for 

different areal zones. The demographic data collected for enumeration areas were 

aggregated in order to create variables using cells as the spatial unit of analysis. 

Variables were created at the individual and household levels and then aggregated to 

the EA level. In rural areas the EA level data were split between the towns located 

within each EA, while in urban areas the data were assigned to the centroid of the EA 

polygon. Having the census data assigned to towns and EA centroids allowed 

overlaying uniform grid cells onto the point layer and aggregate the data for all points 

falling within a cell.  

A. Census variables 

Individual level census data were used to create indicators of fertility (the 

dependent variable) and household structure (independent variables of interest).  As 

discussed above, an age standardized children ever born variable was created and 

used as an individual level measure of fertility (Weeks et al. 2013). Household 

structure variables were created to identify different types of extended family co-

residence. Households where grandchildren of the head of household reside were 

identified, as were households where parents of the head of household reside and 

V. Results: Fertility, living arrangements and diverse urban contexts 
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those with foster children. Households with children that have the two parents 

residing in the household were differentiated from those with single parents and those 

practicing polygamy. Lastly, households with a woman head of household were 

identified. Variables were created to characterize the head of the household using 

religion, ethnicity, usual residence and migration within the last five years. Variables 

were created to summarize housing characteristics including having permanent walls, 

a permanent roof, access to piped water and own toilet, variables were also created to 

characterize women’s education, employment and marriage status. 

Examining the distribution of the different living arrangements identified 

through the household structure variables it is apparent that the most common living 

arrangements in the study area include households that host foster children, 

households where the head is a female and households where the children have a 

single parent residing with them. In contrast, the least common living arrangements 

include households that practice polygamy and households where the parents of the 

head reside (Figure 27).  
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Figure 27: Distribution of household structure variables for 450 m cells 

The distribution of living arrangements throughout the range of urban contexts 

shows that within the most common living arrangements there is a higher 

concentration of households hosting foster children in the most urban end of the 

urban context spectrum. On the other hand, single parent households and female 

headed households are more common in areas located on the least urbanized end of 

the urban spectrum (Figure 28) 
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Figure 28: Distribution of selected living arrangements per urban context class 

As with living arrangements, fertility levels vary substantially throughout the 

urban context. Examining the average age standardized children ever born for each 

urban context class it is evident that the lowest fertility is found in the class dense and 

dispersed small urban patches, followed by the fragmented sub urban class and the 

fragmented large urban patches (Figure 29). The highest fertility is seen in the 

unsettled land and fragmented transition classes while intermediate fertility levels are 

found both in the compact urban core and the scattered settlements that stretch 
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throughout the countryside.  

 

Figure 29: Average age standardized Children ever born (CEBz),      
                            

                             
  per urban context class 

The number of cells with population data varies widely from one unit of 

analysis to the next. For example, in the case of the 450 m cells we have over 58 000 

cells with land cover data but only 4014 of those cells coincide with towns. On the 

other hand, for 14400 m cells we have 90 cells with land cover data and 87 of those 

coincide with towns. Given this variability, and given the fact that there was no a 

priori theory about which spatial scale is “best,” it was decided to assess the effects of 

scale on the relationship between fertility and urban context by running a set of 

ordinary least square regressions for the six different scales of analysis.   
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B. Ordinary least squares (OLS) regression 

Fertility levels were modeled through ordinary least squares regression using 

household structure and urban context as explanatory variables of interest controlling 

for characteristics of the household head, the housing and women. Variables with 

Variance Inflation Factors (VIF) over 6 were removed from the model in order to 

reduce multicollinearity. The explanatory variables were added in five blocks, the 

first block corresponds to a set of dummy variables describing urban context (as 

described in the previous section). For the smaller units of analysis (450 to 3600 m 

cells) one dummy variable was created for each one of the eight urban classes leaving 

the unsettled land class as the reference class. For the larger units of analysis (7200 to 

14400 m) one dummy variable was created for each one of the five urban classes, 

leaving the unsettled land class as the reference class. The second block included 

variables of interest describing living arrangements. The third to fifth blocks 

correspond to the control variables, in which the third block describes characteristics 

of the head of household, the fourth block describes housing characteristics and the 

fifth block summarizes women’s characteristics.  

1. OLS for 450 m cell unit of analysis 

Results from the OLS regression with variables aggregated at 450 m cells indicate 

that the urban context alone accounts for 16% of the variance from cell to cell in the 

level of fertility (the average CEBz). This increases slightly to 18% when we add the 

household structure variables, then jumps to 29% when head of household 
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characteristics are introduced, slight increase to 31% with the addition of housing 

characteristics, and finally to 36% when we add in the variables related to the 

characteristics of adults females in the household (Table 5). Results show that urban 

context at this scale of analysis plays an important role in shaping fertility levels with 

five urban classes resulting in p-values below 0.1 when all the controls are included. 

Compact urban, fragmented large urban patches, dense and dispersed small urban 

patches, fragmented suburban all show significant negative associations with fertility 

levels with the highest coefficient corresponding to the fragmented large urban 

patches class. Among the urban classes with significant negative associations with 

fertility, the most consolidated compact urban class is the one with the weakest of the 

coefficients. On the other hand the variable fragmented transition shows a significant 

positive correlation with fertility, meaning that above average fertility levels are 

found in the least urbanized areas where landscape fragmentation is an indicator of 

early rural settlements. It is interesting to note that the fragmented transition variable 

only becomes significant after all controls are added. Results from the first block 

indicate that all urban context variables but the fragmented transition were significant. 

This result indicates that while some of the differences between urban classes are 

explained by the characteristics of the household head, housing and women in the 

case of the fragmented transition class, these differences aren’t captured by the 

control variables.   

The standardized coefficients observed for the household structure variables 

indicate that few living arrangements have significant impacts on fertility levels in the 
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study area. Lower fertility levels are observed for households with single parents and 

female heads, where p values under 0.001 indicate a strong association between 

fertility and these specific living arrangements. In terms of religion and ethnicity, 

results from OLS show that non-traditional religions tend to have a significant 

positive correlation with fertility while the only ethnic group that shows higher than 

average fertility corresponds to those with a household head belonging to the Ga 

ethnic group. Households that have a head of household who moved from a different 

district within the last five years tend to have significantly lower fertility levels than 

average. This result points to the importance of the connection between migration and 

fertility onsets.  Finally it is worth mentioning that the percentage of women aged 15 

to 20 that remain single is significantly associated with lower fertility levels, a result 

that indicates that delaying marriage is an important driver of fertility decline in the 

region. 
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Table 5: 450 m cell OLS regression coefficients (y:cebz, n: 4015) 

 Block1 β 

 

Block2 β 

β

βBlock1 β 

 

Block3 β Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) 0 0 0 0 0 

Compact urban -0.187*** -0.14*** -0.107*** -0.059*** -0.047** 

Fragmented large urban patches -0.31*** -0.249*** -0.186*** -0.122*** -0.098*** 

Dense and dispersed small urban patches -0.198*** -0.165*** -0.11*** -0.067*** -0.056*** 

Fragmented sub-urban -0.176*** -0.147*** -0.103*** -0.064*** -0.055*** 

Scattered settlements -0.093*** -0.065*** -0.031* -0.018 -0.015 

Sparsely populated -0.081*** -0.059*** -0.028* -0.016 -0.012 

Fragmented transition -0.009 0 0.014 0.018 0.024. 

Fragmented unsettled -0.086*** -0.062*** -0.02 -0.014 -0.014 

R2 :0.1647      

Household structure      

Number of extended family members  -0.04. -0.042* -0.029 -0.031. 

Grand children of the head in HH  0.071** -0.019 -0.031 -0.032 

Parents of the head in HH  0.031* 0.003 0 0.004 

Foster children in HH  0.04 -0.057. -0.053 -0.04 

Single parent in HH  -0.03 -0.102*** -0.111*** -0.115*** 

Two parent HH  0.056. -0.016 -0.029 -0.033 

Polygamist HH  0.009 -0.011 -0.017 -0.019 

Female head in HH  -0.085*** -0.083*** -0.085*** -0.089*** 

R2 :0.1798      

Characteristics of the head of HH      

Catholic  
 

-0.216*** -0.182*** -0.15*** 

Protestant   -0.278*** -0.221*** -0.169*** 

Christian   -0.16*** -0.142*** -0.103*** 

Muslim head of HH   -0.096*** -0.082*** -0.064*** 

Akan   -0.073** -0.079*** -0.077*** 

Ga   0.134*** 0.121*** 0.097*** 

Ewe   -0.17*** -0.163*** -0.156*** 

Moved from district in last 5 years   -0.065*** -0.037* -0.032* 

Different usual residence   0.039* 0.031* 0.022 

R2 :02916      

Housing characteristics      

Permanent walls    -0.197*** -0.164*** 

Permanent roof    0.102*** 0.126*** 

Piped water    -0.08*** -0.044* 

Own toilet    -0.123*** -0.109*** 

R2 :0.3166      

Women's characteristics      

With primary education     0.158*** 

With no schooling     0.147*** 

Employed in informal sector     -0.026 

Women 15-20 single     -0.161*** 

R2 :0.3619      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001 

dependent 
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2. OLS for 900 m cell unit of analysis 

Results from OLS regression with variables aggregated to a 900 m cell indicate 

that urban context and household structure explain 32% of the variance in fertility 

with all the control variables included, a slightly lower R
2 

than for the 450 m cell unit 

of analysis (Table 6). The association between urban context and fertility is 

comparable to one seen for the 450 m cell of analysis with five out of the eight urban 

classes showing significant coefficients. The highest negative coefficient corresponds 

to the fragmented large urban patches class while the lowest one is found again in the 

compact urban area. It is interesting to note that at this scale of analysis the class 

scattered settlements shows a significant negative correlation to fertility with a 

standardized coefficient that is comparable to the one for the compact urban areas. 

This result shows that at this scale of analysis fertility levels in the consolidated 

compact urban neighborhoods are comparable to the ones seen in scattered 

settlements found outside of the city. 

 Living arrangements at the 900 m scale of analysis seem to have similar 

impacts on fertility levels, with both female headed households and single parent 

households showing the most significant negative associations with fertility. 

Additionally the variable average number of extended family members in the 

household shows a slightly lower negative correlation with fertility at this scale of 

analysis.  Positive significant coefficients are seen at this scale of analysis for 

households where the head has a different usual residence and belongs to the Ga 
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ethnic group. Negative significant coefficients on the other hand remain unchanged 

for households where the household head belongs to a non-traditional religion and has 

moved from a different district within the last five years. The percentage of women 

age 15 to 20 never married remains significantly associated with lower fertility levels 

as it was the case for the previous scale of analysis.  

Table 6: 900 m cell OLS regression coefficients (y:cebz, n: 3382) 

 Block1 β 

 

Block2 β 

ββBlock1 

β 

 

Block3 β 

 

Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) 0 0 0 0 0 

Compact urban -0.046** -0.032* -0.047** -0.04* -0.033* 

Fragmented large urban patches -0.22*** -0.194*** -0.153*** -0.13*** -0.103*** 

Dense and dispersed small urban patches -0.2*** -0.191*** -0.114*** -0.084*** -0.066*** 

Fragmented sub-urban -0.092*** -0.088*** -0.056*** -0.045** -0.036* 

Scattered settlements -0.127*** -0.102*** -0.067*** -0.044** -0.035* 

Sparsely populated -0.121*** -0.094*** -0.045** -0.026. -0.022 

Fragmented transition -0.019 -0.006 0.004 0.007 0.006 

Fragmented unsettled -0.062*** -0.04* 0.011 0.016 0.006 

R
2 
:0.1054      

Household structure      

Number of extended family members  -0.053. -0.101*** -0.088*** -0.093*** 

Grand children of the head in HH  0.063* -0.01 -0.005 0.002 

Parents of the head in HH  0.036* 0.009 0.01 0.016 

Foster children in HH  0.05 -0.023 -0.03 -0.014 

Single parent in HH  -0.048 -0.112*** -0.118*** -0.12*** 

Two parent HH  0.027 -0.037 -0.049 -0.05 

Polygamist HH  0.015 0.002 0 -0.003 

Female head in HH  -0.108*** -0.087*** -0.094*** -0.098*** 

R
2 
:0.1247      

Characteristics of the head of HH      

Catholic   -0.229*** -0.199*** -0.168*** 

Protestant   -0.266*** -0.216*** -0.17*** 

Christian   -0.167*** -0.144*** -0.104*** 

Muslim head of HH   -0.099*** -0.092*** -0.071*** 

Akan   -0.075** -0.086*** -0.087*** 

Ga   0.167*** 0.146*** 0.121*** 

Ewe   -0.183*** -0.177*** -0.165*** 

Moved from district in last 5 years   -0.086*** -0.062** -0.053** 

Different usual residence   0.064*** 0.054** 0.041* 

R
2 
:02549      

Housing characteristics      

Permanent walls    -0.177*** -0.152*** 

Permanent roof    0.147*** 0.155*** 

Piped water    -0.06** -0.036. 

Own toilet    -0.127*** -0.117*** 
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R
2 
:0.2794      

Women's characteristics      

With primary education     0.156*** 

With no schooling     0.126*** 

Employed in informal sector     -0.032. 

Women 15-20 single     -0.16*** 

R
2 
:0.3232      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001      

 

3. OLS for 1800 m cell unit of analysis 

Results from OLS regression with variables aggregated to 1800 m cell remain 

very close to the 900 m cell unit with an R
2 
of 0.32 (Table 7). Urban context explains 

less of the variability in fertility at this spatial scale since the number of significant 

classes dropped to four with the fragmented sub-urban class showing no significance 

at all in explaining fertility. The highest negative coefficient for this scale of analysis 

remains in the fragmented large urban patches; followed closely by the dense and 

dispersed small urban patches class. Compact urban and scattered settlements have 

comparable significant negative coefficients, with the compact urban showing a 

slightly lower fertility than the scattered settlements.  

The association between living arrangements and fertility remains unchanged 

from the 900 m cell to the 1800 m cell with female headed households, single parent 

households and average number of extended family household members showing 

significantly lower fertility levels than average. At the 1800 m scale the variable 

household head residing in a different residence still has a positive effect on fertility, 

however its significance dropped from a p value below 0.5 to one below 0.1.  Fertility 
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levels are still evidently lower for households where the household head belongs to a 

non-traditional religion and significantly higher for households where the household 

head belongs to the Ga ethnic group. At this scale the variable household head moved 

within the last five years has no longer a significant negative effect on fertility. It 

seems that with the larger unit of analysis the urban context class is unable to detect 

neighborhoods with predominant migrant populations. As we increase the unit of 

analysis it is clear that the urban context definition loses the ability to identify diverse 

neighborhoods within the city.  

Table 7: 1800 m cell OLS regression coefficients (y:cebz, n: 2270) 

 Block1 β 

 

Block2 β 

ββBlock1 

β 

 

Block3 β Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) 0 0 0 0 0 

Compact urban -0.059** -0.05* -0.061** -0.064** -0.058** 

Fragmented large urban patches -0.16*** -0.152*** -0.115*** -0.112*** -0.087*** 

Dense and dispersed small urban patches -0.206*** -0.208*** -0.127*** -0.112*** -0.086*** 

Fragmented sub-urban -0.047* -0.049* -0.03. -0.022 -0.014 

Scattered settlements -0.126*** -0.117*** -0.078*** -0.057** -0.043* 

Sparsely populated -0.13*** -0.106*** -0.048* -0.029 -0.022 

Fragmented transition -0.013 -0.01 0.002 0.003 0.009 

Fragmented unsettled -0.1*** -0.087*** -0.024 -0.018 -0.02 

R
2 
:0.09482      

Household structure      

Number of extended family members  -0.01 -0.094** -0.08* -0.075* 

Grand children of the head in HH  0.044 -0.016 -0.015 -0.008 

Parents of the head in HH  0.039. 0.015 0.021 0.025 

Foster children in HH  0.061 -0.007 -0.023 -0.007 

Single parent in HH  -0.036 -0.105** -0.109** -0.108** 

Two parent HH  0.023 -0.03 -0.042 -0.031 

Polygamist HH  0.001 -0.012 -0.013 -0.011 

Female head in HH  -0.114*** -0.085** -0.087** -0.085** 

R
2 
:0.1162      

Characteristics of the head of HH      

Catholic   -0.246*** -0.206*** -0.176*** 

Protestant   -0.263*** -0.204*** -0.165*** 

Christian   -0.183*** -0.158*** -0.126*** 

Muslim head of HH   -0.089*** -0.084*** -0.07*** 

Akan   -0.064* -0.081** -0.083** 

Ga   0.22*** 0.189*** 0.158*** 

Ewe   -0.159*** -0.16*** -0.161*** 

Moved from district in last 5 years   -0.063** -0.035 -0.025 
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Different usual residence   0.063** 0.047* 0.037. 

R
2 
:0.2534      

Housing characteristics      

Permanent walls    -0.185*** -0.138*** 

Permanent roof    0.183*** 0.168*** 

Piped water    -0.071** -0.052* 

Own toilet    -0.132*** -0.126*** 

R
2 
:0.2846      

Women's characteristics      

With primary education     0.148*** 

With no schooling     0.118*** 

Employed in informal sector     -0.01 

Women 15-20 single     -0.145*** 

R
2 
:0.3242      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001      

4. OLS for 3600 m cell unit of analysis 

Results from the OLS regression with variables aggregated to 3600 m cells 

yielded a higher R
2
 of 0.38 (Table 8), meaning that at this larger scale urban context 

and household structure explain more of the variability in fertility levels. The 

association between urban context and fertility dropped considerably at this scale of 

analysis with only three urban classes showing significant coefficients. At this scale 

fragmented large urban patches, dense and dispersed small urban patches and 

fragmented sub-urban areas have significant negative coefficients with the highest 

one corresponding to the fragmented large urban patches class and the lowest one the 

fragmented sub-urban class. With greater cell size, some of the differences that were 

observed between neighborhoods disappear. For example the compact urban core 

doesn’t seem to have a significantly different fertility level than any of the other 

urban neighborhoods.  
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At this scale of analysis household structure variables with significant 

correlation to fertility are limited to polygamist households and female headed 

households, both with negative standardized coefficients. On the other hand 

households where the head of household has a different place of residence tend to 

have higher fertility as was the case with smaller cells of analysis. However, the 

effect seems to get stronger at this scale with a much higher standardized coefficient. 

In terms of religion we can see that at this scale household heads belonging to non-

traditional religions preserve their negative association with fertility with the 

exception of Muslim heads which is not significant. As for ethnicity households 

where the head belongs to the Ga ethnic group continue to show higher than average 

fertility levels.  

Table 8: 3600 m cell OLS regression coefficients (y:cebz, n: 925) 

 Block1 β 

 

Block2 β 

ββBlock1 

β 

 

Block3 β 

 

Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) 0 0 0 0 0 

Compact urban -0.005 -0.011 -0.026 -0.033 -0.025 

Fragmented large urban patches -0.197*** -0.18*** -0.142*** -0.127*** -0.107*** 

Dense and dispersed small urban patches -0.123*** -0.118*** -0.083** -0.079** -0.065* 

Fragmented sub-urban -0.167*** -0.166*** -0.097*** -0.08** -0.067* 

Scattered settlements -0.124*** -0.113*** -0.075** -0.047 -0.036 

Sparsely populated -0.176*** -0.146*** -0.074* -0.042 -0.038 

Fragmented transition -0.011 -0.016 0.013 0.015 0.023 

Fragmented unsettled -0.106*** -0.104*** -0.019 -0.005 -0.003 

R
2 
:0.1095      

Household structure      

Number of extended family members  0.089. -0.044 -0.031 -0.033 

Grand children of the head in HH  0.125* 0.027 0.011 0.023 

Parents of the head in HH  0.047 0.018 0.02 0.017 

Foster children in HH  0.092 0.023 -0.007 0.014 

Single parent in HH  0.082 0.008 -0.005 -0.012 

Two parent HH  0.109 0.04 0.016 0.026 

Polygamist HH  -0.056. -0.071* -0.077** -0.056. 

Female head in HH  -0.187*** -0.152*** -0.15*** -0.135** 

R
2 
:0.1505      

Characteristics of the head of HH      
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Catholic   -0.219*** -0.18*** -0.161*** 

Protestant   -0.282*** -0.226*** -0.205*** 

Christian   -0.242*** -0.221*** -0.195*** 

Muslim head of HH   -0.046 -0.036 -0.02 

Akan   -0.066 -0.085. -0.079 

Ga   0.288*** 0.263*** 0.24*** 

Ewe   -0.21*** -0.221*** -0.223*** 

Moved from district in last 5 years   -0.085* -0.058. -0.046 

Different usual residence   0.104*** 0.089** 0.085** 

R
2 
:0.3445      

Housing characteristics      

Permanent walls    -0.155** -0.097. 

Permanent roof    0.154*** 0.12** 

Piped water    -0.089* -0.08* 

Own toilet    -0.113*** -0.111*** 

R
2 
:0.3667      

Women's characteristics      

With primary education     0.096** 

With no schooling     0.047 

Employed in informal sector     0.017 

Women 15-2 single     -0.118*** 

R
2 
:0.3867      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001      

5. OLS for 7200 m cell unit of analysis 

Results from OLS regression with variables aggregated for 7200 m cell yielded a 

higher R
2
 of 0.43 (Table 9); however most of the variables of interest seem to have 

lost their power to explain fertility levels at this scale. None of the six urban classes 

from the urban context show significant associations with fertility, a result that 

confirms that with the larger cell size greater variance blurs the correlation between 

the characteristics of the urban context and demographic variables. The association 

between living arrangements and fertility is significantly lower for this cell size with 

only two variables showing significant coefficients. Polygamist household show a 

significant positive coefficient same as households where the head of household has a 

different residence an effect that is maximized for this variable at this scale of 
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analysis. The connection between religion, ethnicity and fertility remains mostly 

unchanged with household heads belonging to non-traditional religions showing 

significantly lower fertility and households where the household head belongs to the 

Ga ethnic group showing significantly higher fertility. 

Table 9: 7200 m cell OLS regression coefficients (y:cebz, n:291) 

 Block1 β 

 

Block2 β 

ββBlock1 

β 

 

Block3 β 

 

Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) 0 0 0 0 0 

Compact urban -0.168** -0.157** -0.13** -0.077 -0.063 

Fragmented sub-urban -0.228*** -0.219*** -0.153** -0.09 -0.07 

Scattered settlements -0.034 -0.012 -0.012 0.015 0.034 

Sparsely populated -0.179** -0.15* -0.059 -0.049 -0.043 

Fragmented transition -0.072 -0.101. 0.017 0.018 0.038 

R
2 
:0.0793      

Household structure      

Number of extended family members  0.171. -0.081 -0.023 -0.008 

Grand children of the head in HH  0.179. 0.032 -0.014 -0.008 

Parents of the head in HH  0.082 0.065 0.068 0.057 

Foster children in HH  0.3. 0.146 0.111 0.155 

Single parent in HH  0.286* 0.132 0.124 0.113 

Two parent HH  0.233. 0.164 0.138 0.18 

Polygamist HH  0.171** 0.077 0.124* 0.119* 

Female head in HH  -0.193* -0.113 -0.141 -0.084 

R
2 
:0.1667      

Characteristics of the head of HH      

Catholic   -0.252*** -0.194*** -0.179*** 

Protestant   -0.236*** -0.179** -0.182** 

Christian   -0.24*** -0.229*** -0.195** 

Muslim head of HH   -0.093. -0.134* -0.111. 

Akan   0.092 0.055 0.042 

Ga   0.492*** 0.45*** 0.403*** 

Ewe   -0.127 -0.212. -0.236* 

Moved from district in last 5 years   -0.071 -0.031 -0.041 

Different usual residence   0.126* 0.123* 0.129* 

R
2 
:0.3926      

Housing characteristics      

Permanent walls    -0.052 -0.018 

Permanent roof    -0.055 -0.101 

Piped water    -0.078 -0.071 

Own toilet    -0.229*** -0.214*** 

R
2 
:0.4204      

Women's characteristics      

With primary education     0.133* 

With no schooling     0.014 

Employed in informal sector     -0.028 



111 

 

Women 15-20 single     -0.131* 

R
2 
:0.4388      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001      

6. OLS for 14400 m cell unit of analysis 

Finally results from the OLS regression with variables aggregated to 14400 m cell 

produced an R
2
 of 0.63 but again most of the variables of interest were not significant 

(Table 10). In terms of the urban context compact urban and fragmented sub urban 

classes show a barely significant negative association with fertility. With the large 

unit of analysis most of the detail about the urban context is lost and there is limited 

differentiation between urban from non-urban effects. The magnitudes of the 

association that we see for the two classes are almost identical, which does not really 

allow to differentiate fertility levels between urban classes. At this scale the only 

living arrangement that shows a significant association with fertility levels 

corresponds to polygamist households, where the positive coefficient indicates an 

above average fertility level. 

Defining urban context with the largest of the cell sizes provides essentially no 

explanatory value for fertility since none of the urban classes have significant 

coefficients. Upon comparing results from OLS regression at different levels of 

aggregation we conclude that smaller units of analysis seem to capture homogeneous 

areas characterizing the urban context, which have the strongest associations with 

demographic characteristics. The connection between fertility, household structure 

and urban context is further examined for the smallest (450 m) unit of analysis. 



112 

 

Table 10: 14400 m cell OLS regression coefficients (y:cebz, n: 88) 

 Block1 β 

 

Block2 β 

ββBlock1 

β 

 

Block3 β 

 

Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) 0 0 0 0 0 

Compact urban -0.311** -0.339** -0.251* -0.197 -0.241. 

Fragmented sub-urban -0.188. -0.187 -0.221 -0.147 -0.254. 

Scattered settlements -0.008 -0.097 -0.011 0.015 0.008 

Sparsely populated -0.181 -0.189 -0.102 -0.06 -0.048 

Fragmented transition -0.056 -0.161 0.041 0.07 0.117 

R
2 
:0.07908      

Household structure      

Number of extended family members  0.124 0.068 0.089 -0.141 

Grand children of the head in HH  0.393 0.207 0.062 0.105 

Parents of the head in HH  -0.081 -0.072 0.015 0.066 

Foster children in HH  0.724 0.102 -0.209 0.427 

Single parent in HH  0.704 0.101 -0.157 0.086 

Two parent HH  0.14 0.094 -0.13 0.091 

Polygamist HH  0.313* 0.203. 0.308** 0.393*** 

Female head in HH  -0.384* -0.195 -0.427* -0.298 

R
2 
:0.2407      

Characteristics of the head of HH      

Catholic   -0.268* -0.241* -0.169. 

Protestant   -0.07 0.042 -0.123 

Christian   -0.295. -0.307. -0.366* 

Muslim head of HH   0.031 -0.069 -0.101 

Akan   -0.158 -0.131 -0.163 

Ga   0.281 0.239 0.083 

Ewe   -0.409. -0.561* -0.723** 

Moved from district in last 5 years   0.225 0.154 0.2 

Different usual residence   0.013 0.03 0.2 

R
2 
:0.4287      

Housing characteristics      

Permanent walls    0.204 0.499* 

Permanent roof    -0.08 -0.138 

Piped water    -0.158 0.036 

Own toilet    -0.4** -0.389** 

R
2 
:0.4736      

Women's characteristics      

With primary education     0.003 

With no schooling     -0.542* 

Employed in informal sector     0.933*** 

Women 15-20 single     -0.207 

R2 :0.6324      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001      
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7. OLS for 450 m cell unit of analysis and spatially filtered variables 

The strength of the association between fertility, household structure and urban 

context was further examined by controlling for spatial autocorrelation in the OLS 

model. The residuals from the 450 m cell OLS regression were tested for spatial 

autocorrelation, producing a highly significant Moran’s I with z score of 34.74 (p < 

.000), that indicated the incidence of spatial autocorrelation in the OLS regression 

model (Figure 30).   

 

Figure 30: Moran's I scatter plot for 450 m OLS residuals 

Each independent variable was analyzed for spatial autocorrelation with Moran’s 

I, and all household structure, household head, housing and women characteristics 

variables produced significant levels of spatial autocorrelation. Once the incidence of 

spatial autocorrelation was established the   
 
statistic was estimated for a series of 
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increasing distances for each one of the sets of independent variables until maximum 

spatial autocorrelation was reached and critical distances were defined (Figure 31) 

 

Figure 31: Critical distances for GI* for selected housing characteristic 

variables 

Having defined the critical distance for each of the independent variables, the 

distances were used to generate spatially filtered variables. The Getis spatial filter 

technique was used to decompose each individual variable into its spatial and non-

spatial components. Filtered spatial and non-spatial components were then used as 

explanatory variables for an OLS regression with fertility defined as the dependent 

variable. 

Table 11: Regression coefficients from OLS with spatially filtered variables 

(y:cebz, n: 4015) 

 Block1 β 

 

Block2 β 

ββBlock1 

β 

 

Block3 β 

 

Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) 0 0 0 0 0 

Compact urban -0.187*** -0.164*** -0.129*** -0.066*** -0.049** 

Fragmented large urban patches -0.31*** -0.292*** -0.228*** -0.135*** -0.091*** 
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Dense and dispersed small urban patches -0.198*** -0.186*** -0.126*** -0.075*** -0.052*** 

Fragmented sub-urban -0.176*** -0.173*** -0.123*** -0.071*** -0.048** 

Scattered settlements -0.093*** -0.069*** -0.039** -0.016 -0.006 

Sparsely populated -0.08*** -0.062*** -0.024. -0.008 -0.004 

Fragmented transition -0.01 0.003 0.031* 0.035* 0.042** 

Fragmented unsettled -0.087*** -0.073*** -0.021 -0.014 0.005 

R2 :0.1647 AIC: 979      

Household structure      

Number of extended family memb. filtered  -0.039 0.61*** 0.591*** 0.369** 

Number of extended family memb. Spatial  -0.013 -0.717*** -0.697*** -0.463*** 

Grand children of the head in HH filtered  0.089*** 0.026 0.02 0.023 

Grand children of the head in HH spatial  0.077* 0.109*** 0.112*** 0.104*** 

Parents of the head in HH filtered  0.115*** 0.057* 0.064* 0.063* 

Parents of the head in HH spatial 

 

 -0.097** -0.04 -0.056. -0.046 

Foster children in HH filtered  0.042 -0.019 -0.01 -0.012 

Foster children in HH spatial  0.109*** 0.084** 0.165*** 0.069* 

Single parent in HH filtered  -0.033 -0.081** -0.088*** -0.083*** 

Single parent in HH spatial  0.047* 0.005 0.023 -0.016 

Two parent HH filtered  0.086** 0.024 0.011 -0.004 

Two parent HH spatial  -0.045. -0.044. -0.044. -0.029 

Polygamist HH filtered  -0.184*** -0.111* -0.03 -0.02 

Polygamist HH spatial  0.193*** 0.092* 0.001 -0.005 

Female head in HH filtered  -0.074*** -0.075*** -0.071*** -0.059*** 

Female head in HH spatial  -0.106*** -0.132*** -0.063. -0.101** 

R2 :0.19 AIC:871      

Characteristics of the head of HH      

Catholic filtered   -0.14*** -0.117*** -0.084*** 

Catholic spatial   -0.101*** -0.074*** -0.017 

Protestant filtered   -0.25*** -0.193*** -0.122*** 

Protestant spatial 

 

  -0.201*** -0.143*** -0.085*** 

Christian filtered 

 

  -0.123*** -0.097*** -0.027 

Christian spatial   -0.152*** -0.128*** -0.16*** 

Muslim filtered   -0.024 0.007 0.026 

Muslim spatial   -0.148*** -0.161*** -0.127*** 

Akan filtered   -0.093*** -0.089*** -0.062*** 

Akan spatial   0.064** 0.084*** 0.09*** 

Ga filtered   0.193*** 0.173*** 0.154*** 

Ga spatial   -0.061** -0.085*** -0.123*** 

Ewe filtered   -0.119*** -0.13*** -0.098*** 

Ewe spatial   -0.087** -0.108*** -0.073* 

Moved from district in last 5 years filtered   -0.058** -0.046* -0.022 

Moved from district in last 5 years spatial   -0.018 0.01 -0.028 

Different usual residence filtered   0.015 0.012 -0.023 

Different usual residence spatial   0.021 0.014 0.046. 

R2 :0.342 AIC: 55      

Housing characteristics      

Permanent walls filtered    -0.198*** -0.161*** 

Permanent walls spatial    -0.182*** -0.152*** 

Permanent roof filtered    -0.005 0.035 

Permanent roof spatial    -0.043 0.02 

Piped water filtered    -0.081*** -0.032 

Piped water spatial    -0.017 0.021 

Own toilet filtered    -0.07*** -0.06*** 
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Own toilet spatial    -0.026 -0.031. 

R2 :0.3652 AIC: -80      

Women's characteristics      

With primary education filtered     0.093*** 

With primary education spatial     0.115*** 

With no schooling filtered     0.182*** 

With no schooling spatial     -0.093*** 

Employed in informal sector filtered     -0.006 

Employed in informal sector spatial     0.009 

Women 15-20 single filtered 

 

    -0.159*** 

Women 15-20 single spatial     -0.047. 

R2 :0.4206 AIC:-440      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001      

 

Results from the OLS regression using spatially filtered variables yielded a higher 

R
2
 of 0.42 than from simple regression results (0.36). Results from spatially filtered 

OLS show that the urban context variables are significantly associated to fertility 

levels, with five out of the eight classes showing significant coefficients (Table 11). 

Lower fertility levels are seen in the more urbanized areas characterized as compact 

urban, fragmented large urban patches, dense and dispersed small urban patches and 

fragmented suburban, with the highest of the negative coefficients found in the 

fragmented large urban patches class and the lowest in the fragmented suburban class 

followed closely by the consolidated compact urban core. On the other hand higher 

fertility than average is seen only for the fragmented transition class which is one of 

the least urbanized areas in the urban context scheme. Comparing results from the 

OLS with filtered variables and unfiltered ones we can see that the standardized 

coefficient for the fragmented transition class increased in significance. This result 

indicates that when controlling for spatial autocorrelation in several of the 

independent variables we are controlling for some of the spatial dependence found in 
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the more urban portion of the urban gradient, improving our ability to capture 

associations taking place on the less urban portion of the gradient. 

Some interesting differences are apparent in the associations between living 

arrangements and fertility levels for spatially filtered OLS and unfiltered OLS. 

Results from OLS with unfiltered variables showed that female headed households 

and single parent households had the lowest fertility. Results from the OLS with 

spatially filtered variables indicate that the negative coefficient seen for the variable 

female headed household can be decomposed into significant negative coefficients 

from both the filtered and spatial components of the variable. In the case of the single 

parent variable the negative coefficient comes entirely from the filtered component of 

the variable itself, with no spatial component. Results from the spatially filtered OLS 

show that the spatial components of households with grandchildren of the head, foster 

children and two parents present in the household have significantly lower fertility 

levels than average. In the case of the variable average number of extended family 

members in the households we see that both the spatial and filtered components 

exhibit significant associations with fertility. While this last variable was not 

significant in the OLS with unfiltered variables, it is worth noting that the effects of 

the filtered and spatial components in the OLS with filtered variables are opposite. 

While the spatial component has a strong negative effect the filtered component has a 

strong positive effect on fertility. Finally in the spatially filtered OLS a significant 

positive spatial effect on fertility is observed for households where the household 

head has a different place of residence. 
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The lower fertility levels observed for households with heads belonging to non-

traditional religions can in most cases be decomposed into significant filtered and 

spatial effects with the exception of Catholic heads which only have significant non-

spatial effects and Muslim heads which only have significant spatial effects. The 

higher fertility levels that we have consistently seen for households with heads 

belonging to the Ga ethnic group can be decomposed in two opposite effects in the 

OLS with filtered variables. While the filtered component shows a strong significant 

positive association with fertility, the spatial component of the variable has a 

significant negative correlation with fertility. The consistently lower fertility that we 

have seen for women 15 to 20 never married can be attributed to the filtered 

component of the variable in the spatially filtered OLS.  

The residuals from the new OLS regression were tested again for spatial 

autocorrelation, resulting in a highly significant Z score of 30.60 (p < .000) that 

indicates remaining spatial autocorrelation in the association between fertility, 

household structure and urban context (Figure 32).  
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Figure 32: Moran scatter plot for residuals of filtered variables OLS 

C. Spatial error model 

Given that spatial autocorrelation persists in the OLS regression with the spatially 

filtered variables a spatial error model was used to improve the model and specify the 

spatial component in the error term. Comparing the results from the OLS regression 

with the spatial error model we can see that the inclusion of the spatial error term 

improved the model fit. The OLS regression with filtered variables generated a log 

likelihood of 280, which was increased to 632 upon running the spatial error model. 

The Akaike info Criterion (AIC) estimates indicate a clearly higher model fit, going 

from -440 for the OLS to -1143 in the spatial error model (Table 12). The spatial 

autoregressive coefficient, λ of 0.528 is highly significant (p < .000) indicating high 

levels of autocorrelation in the variables unaccounted for by the model.  
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The urban context variables are significant in explaining fertility in the spatial 

error model with five out of the eight variables showing p values below 0.01. The 

highest negative coefficients are found in the fragmented large urban patches while 

the lowest ones are found in the fragmented suburban areas. The fragmented 

transition class, on the opposite end of the urban spectrum scheme, shows a 

significant positive association with fertility pointing to higher fertility levels in the 

least urbanized areas of the study area. A close look at the variables of interest reveals 

that the magnitudes of most coefficients remain unchanged in the spatial error model. 

The spatial component of the variable grandchildren of the head has a significant 

positive impact on fertility, the same as for the spatial component of the variable 

foster children in the household, while the spatial component of the variable 

polygamist households has a significant negative effect on fertility. The negative 

association between single parent households and fertility is exclusively a filtered 

effect in the spatial error model with no significant spatial component. Female headed 

households on the other hand have both significant negative effects on fertility for the 

filtered and spatial component. The average number of members of extended family 

in the household keeps opposite effects on fertility in the spatial error model with the 

filtered component showing a strong positive effect while the spatial component has a 

strong negative effect.  

The significantly lower fertility levels seen in households with heads of household 

belonging to non-traditional religions is exclusively a non-spatial effect in the spatial 

error model, with the exception of Christian and Muslim heads where the effects are 
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only spatial. As it was the case for the OLS with spatially filtered variables results 

from the spatial error model show that the lower fertility levels seen in households 

where the head belongs to the Ga ethnic group can be decomposed into two opposite 

effects. While the filtered variable has a strong significant positive effect on fertility 

the spatial component of the variable has a strong significant negative effect on 

fertility.   

Table 12: Spatial error model coefficient estimates (y:cebz, n: 4015) 

 Block1 β 

 

Block2 β 

ββBlock1 

β 

 

Block3 β 

 

Block4 β 

 

Block5 β 

ββBlock1 

β 

 

Urban context      

(Intercept) -0.008 -0.009 -0.005 -0.006 -0.006 

Compact urban -0.147*** -0.133*** -0.119*** -0.07*** -0.054*** 

Fragmented large urban patches -0.22*** -0.203*** -0.19*** -0.116*** -0.085*** 

Dense and dispersed small urban patches -0.126*** -0.117*** -0.101*** -0.064*** -0.048*** 

Fragmented sub-urban -0.12*** -0.114*** -0.104*** -0.061*** -0.047*** 

Scattered settlements -0.054*** -0.042*** -0.025* -0.008 0 

Sparsely populated -0.045*** -0.034** -0.024* -0.014 -0.005 

Fragmented transition 0.016 0.023. 0.034* 0.039** 0.039** 

Fragmented unsettled -0.03* -0.021 -0.009 -0.006 0.007 

Lambda 0.613***     

Pseudo R
2 
:0.381 AIC: -213 Log like:118      

Household structure      

Number of extended family memb. filtered  0.069 0.482*** 0.487*** 0.338* 

Number of extended family memb. Spatial  -0.14 -0.585*** -0.593*** -0.437** 

Grand children of the head in HH filtered  0.034 0.016 0.007 0.02 

Grand children of the head in HH spatial  0.079* 0.103*** 0.108*** 0.105*** 

Parents of the head in HH filtered  0.048. 0.022 0.019 0.031 

Parents of the head in HH spatial 

 

 -0.053 -0.025 -0.028 -0.027 

Foster children in HH filtered  0.028 0.015 0.015 0.019 

Foster children in HH spatial  0.033 0.08** 0.165*** 0.122*** 

Single parent in HH filtered  -0.053* -0.067** -0.078** -0.066** 

Single parent in HH spatial  -0.003 -0.026 -0.017 -0.039. 

Two parent HH filtered  0.055* 0.017 0.003 -0.008 

Two parent HH spatial  -0.043. -0.006 -0.011 -0.002 

Polygamist HH filtered  0.012 0.02 0.086. 0.096* 

Polygamist HH spatial  -0.04 -0.058 -0.135** -0.136** 

Female head in HH filtered  -0.072*** -0.06*** -0.056** -0.053** 

Female head in HH spatial  -0.103** -0.152*** -0.092* -0.103** 

Lambda  0.618***    

Pseudo R
2 
:0.398 AIC: -296 Log like:175      

Characteristics of the head of HH      

Catholic filtered   -0.123*** -0.097*** -0.057*** 

Catholic spatial   -0.066*** -0.037. 0.001 
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Protestant filtered   -0.207*** -0.147*** -0.072*** 

Protestant spatial   -0.183*** -0.119*** -0.041. 

Christian filtered 

 

  -0.044* -0.017 0.044* 

Christian spatial   -0.171*** -0.142*** -0.157*** 

Muslim filtered   -0.012 0.017 0.027 

Muslim spatial   -0.136*** -0.146*** -0.119*** 

Akan filtered   -0.063** -0.058** -0.035. 

Akan spatial   0.079*** 0.102*** 0.095*** 

Ga filtered   0.131*** 0.114*** 0.087*** 

Ga spatial   -0.084*** -0.114*** -0.147*** 

Ewe filtered   -0.104*** -0.124*** -0.11*** 

Ewe spatial   -0.051 -0.078* -0.073* 

Moved from district in last 5 years filtered   -0.039* -0.028 -0.018 

Moved from district in last 5 years spatial   -0.053* -0.03 -0.03 

Different usual residence filtered   0.032 0.028 0.009 

Different usual residence spatial   -0.009 -0.014 -0.007 

Lambda   0.537***   

Pseudo R
2 
:0.456 AIC: -659 Log like:374      

Housing characteristics      

Permanent walls filtered    -0.206*** -0.146*** 

Permanent walls spatial    -0.164*** -0.108** 

Permanent roof filtered    -0.033 -0.012 

Permanent roof spatial    -0.068. -0.034 

Piped water filtered    -0.085*** -0.023 

Piped water spatial    -0.021 0.031 

Own toilet filtered    -0.085*** -0.08*** 

Own toilet spatial    -0.048* -0.051** 

Lambda    0.535***  

Pseudo R
2 
:0.478 AIC: -810 Log like:458      

Women's characteristics      

With primary education filtered     0.079*** 

With primary education spatial     0.135*** 

With no schooling filtered     0.216 

With no schooling spatial     -0.047. 

Employed in informal sector filtered     0 

Employed in informal sector spatial     0.029 

Women 15-20 single filtered 

 

    -0.151 

Women 15-20 single spatial     -0.048. 

Lambda     0.528*** 

Pseudo R
2 
:0.52 AIC: -1143 Log like:632      

.p<0.1, *p<0.05, **p<0.01, ***p<0.001      

D. Geographically weighted regression 

Results from OLS and spatial error models show that there is a strong association 

between fertility, household structure and urban context. However, the variance in the 

strength of the association between dependent and independent variables points to the 
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possibility that there is non-stationarity in the models. Running the same OLS 

regression for each one of the urban context classes separately it becomes evident that 

there is a fair amount of spatial variability in the association between living 

arrangements and fertility within the study area. The variable female headed 

household showed a consistent significant negative association with fertility 

throughout all the models (unfiltered OLS, filtered OLS and spatial error model), yet 

results from OLS run on one urban context class at a time show that there are 

significant differences in the strength of that association from place to place. While 

the highest negative coefficients are concentrated in the outskirts of the urban areas of 

Greater Accra and Tema, positive coefficients can be seen in the less urbanized area 

defined as fragmented transition (Figure 33). 

The strength of the association between the average number of extended family 

members in the household and fertility levels shows similar spatial variability 

patterns. While higher fertility levels are seen in households with numerous extended 

family members within the city of Accra lower fertility levels are seen in households 

with numerous extended family members found in the least urban areas of the study 

area (Figure 34). 
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Figure 33: Female headed household coefficient estimates for OLS with one 

urban class at a time 
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Figure 34: Average number of extended family members in household 

coefficient estimates for OLS with one urban class at a time 

The main hypothesis in this study is that fertility is associated with living 

arrangements and that those in turn are associated with different urban contexts. As 

the complexity of urban contexts varies spatially it is expected that the strength of the 

association between those urban contexts, living arrangements and fertility levels will 

also vary through space. In order to capture the spatial heterogeneity of the 

association between dependent and independent variables the strength of the 

correlation between urban context, living arrangements and fertility levels was tested 
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through geographically weighted regression (GWR) and the spatial distribution of 

coefficients was estimated. 

In order to assess the effects of the urban context on fertility levels through GWR 

the urban classification was rescaled into a continuous variable. The rescaled urban 

context ranges from 0 to 100, where 100 correspond to the compact urban class and 0 

to the unsettled land class (Table 13).  

Table 13: Urban context class rescaled 

  Rescaled Urban context class 

Compact urban 100 

Fragmented large urban patches 88 

Dense and dispersed small urban patches 75 

Fragmented sub-urban 62 

Scattered settlements 50 

Sparsely populated 38 

Fragmented transition 25 

Fragmented unsettled 12 

Unsettled land 0 

 

Before estimating spatial heterogeneity in the model an OLS regression was run 

replacing the urban context dummy variables by the rescaled continuous urban 

context one. Results from the OLS showed that the rescaled urban context variable 

has a significant negative relationship with fertility levels, where areas belonging to 

the more urban side of the spectrum have significantly lower fertility levels than those 

found on the least urbanized side of the spectrum (Table 14). 
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Table 14: Spatial error model coefficient estimates (y:cebz, n: 4015) 

 Estimate β 

 

Urban context  

(Intercept) 0 

Compact urban -0.073*** 

Household structure  

Number of extended family members -0.034. 

Grand children of the head in HH -0.025 

Parents of the head in HH 0.005 

Foster children in HH -0.031 

Single parent in HH -0.106*** 

Two parent HH -0.025 

Polygamist HH -0.019 

Female head in HH -0.088*** 

Characteristics of the head of HH  

Catholic -0.15*** 

Protestant -0.166*** 

Christian -0.103*** 

Muslim head of HH -0.061*** 

Akan -0.086*** 

Ga 0.099*** 

Ewe -0.151*** 

Moved from district in last 5 years -0.031* 

Different usual residence 0.022 

Housing characteristics  

Permanent walls -0.17*** 

Permanent roof 0.101*** 

Piped water -0.048* 

Own toilet -0.115*** 

Women's characteristics  

With primary education 0.163*** 

With no schooling 0.157*** 

Employed in informal sector -0.025 

Women 15-20 single -0.166*** 

R
2 
:0.36 AIC: -77  

.p<0.1, *p<0.05, **p<0.01, ***p<0.001  

 

Results from the OLS regression show that single parent households and female 

headed households have significantly lower fertility levels than average whereas 

households where the household head has a different place of residence have 

significantly higher fertility levels. These results are consistent with the findings in 

the previous sections.   
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GWR was used to model fertility over space using household structure and urban 

context as the independent variables of interest while controlling for the 

characteristics of the head of household, housing and women. The same variables 

used in section 5.2.1 were used for the GWR with the exception that the urban 

context dummies where replaced by a rescaled continuous version of the same 

variable. The average local R
2
 generated by the GWR reaches 0.82 and spreads from 

the lower end of 0.57 to a high 0.95 (Figure 35). The variance in fertility level that is 

explained by the independent variables is lowest in the rural areas located the farthest 

from Greater Accra in the far east, west and north edges of the study site and also for 

a cluster within the city of Greater Accra. This result indicates that the model 

performance is lower for the two opposite extremes of the urban context and is the 

highest for the intermediate urban classes where the R
2
 is the highest. 
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Figure 35: Local R
2
 from GWR for model:         (      )  

  (      )                 (      )                (      )         

  (      )           (      )         

Results from the OLS using the rescaled urban context variable as one of the 

independent variables show that degree of urbanization is overall negatively 

associated with fertility levels. However as it was shown in previous sections, there 

are specific instances where urbaneness is associated with higher fertility. Fertility 

levels were consistently higher throughout the study in the fragmented transition--a 

result that indicates that towards the lower end of the urban spectrum the effects on 

fertility are reversed. Results from GWR show the detail of the spatial distribution of 

the urban context effect on fertility. Coefficients for the rescaled urban context 
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variable indicate that strong positive relationships with fertility are restricted to four 

hot spots, two of them coinciding with areas that are not very densely populated and 

the remaining two corresponding to the city centers of Greater Accra and Tema 

(Figure 36). 

 

Figure 36: Urban context coefficient estimates from GWR 

Results from OLS and spatial error model showed that the most consistently 

significant living arrangement variables predicting fertility are female headed 

households, single parent households and household head with a different place of 

residence. Throughout this study single parent and female headed households have 

exhibited significantly lower fertility levels; whereas households where the head 
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resides in a different residence have shown significantly higher fertility levels. 

Results from the GWR analysis show that those positive and negative effects on 

fertility are more complex when examined spatially.  

 

Figure 37: Single parent household coefficient estimates from GWR 

Even though single parent households tend to have lower fertility levels globally, 

at local scales results from GWR show that there are particular areas where single 

parent households have higher fertility levels than average. Higher fertility is seen for 

single parent households in areas that are vastly rural on the western, eastern and 

northern edges of the study area but also in the rural areas immediately adjacent to the 
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city of Accra (Figure 37). It is worth noting that fertility is relatively low for single 

parent households located on the banks of the Volta River. 

 

Figure 38: Female headed household coefficient estimates from GWR 

The consistently significantly lower fertility levels that were observed throughout 

the study for female headed households can be split into below average and above 

average fertility levels by GWR (Figure 38). The spatial distribution of the 

coefficients for the female headed household show a clear network pattern, where 

lower fertility connects areas that coincide with major settlements and cities. An 

interesting example is the town of Koforidua, northeast of Accra, where we see an 

isolated island of lower fertility. 
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Figure 39: Household head with different residence coefficient estimates from 

GWR 

The significantly higher fertility in households where the household head has a 

different usual residence is also split by GWR into lower than average and higher 

than average fertility. Lower fertility is seen in households where the household head 

is away mostly in rural areas while fertility tends to be higher in smaller inland 

settlements (Figure 39), a result that indicates that temporary outmigration might be 

connected to increased reproduction levels in rural areas of the region. 
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A. Defining the urban context 

Results showed that spectral mixture analysis applied to Landsat ETM+ using a 

VIS model is a valuable approach for mapping built and vegetation land covers using 

moderate resolution imagery. Error assessment of the SMA-based built and 

vegetation land cover maps are very encouraging with fairly low commission and 

omission errors. However, it is important to recognize that SMA had difficulties 

detecting impervious surfaces in urban areas where soil and built land covers are 

highly mixed, as it is the case in most cities of developing countries. The lack of 

paved areas and the prevalence of soil and mixed pixels in populated areas in our 

study area make it challenging to distinguish settlements from undeveloped spaces. In 

testing different combinations of end-members for SMA it became clear that there is 

a fair amount of confusion between impervious surfaces and bright soils. Even though 

misclassification errors were reduced by excluding bright undeveloped land from the 

analysis, the final SMA output still tends to under-estimate the extent of the built 

environment. This finding illustrates the need to improve sub-pixel classifications for 

urban mapping in developing countries and suggests that a multiple end-member 

approach to SMA might generate an improved land cover classification. 

In this study the problem associated with confusion between impervious and soil 

cover was addressed by using satellite SAR data as an additional source of imagery. 

The moderate resolution optical imagery used for SMA was thus complemented with 

VI. Discussion 
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moderate resolution ERS-2 radar imagery used to extract measures of texture. 

Combining both sources of imagery provides a useful approach to urban/built 

mapping that takes advantage of the distinct sensitivities that radar and optical sensors 

have for distinguishing land surface materials and features. Research in diverse 

environments has consistently found that radar imagery is particularly useful for 

urban mapping when combined with optical imagery (Haack and Bechdol 2000; 

Haack et al. 2002).  

The capacity of SAR sensors to detect differential backscatter associated with 

surface roughness and micro-topography makes SAR imagery suitable for detection 

of artificial structures given their propensity to generate mixed returns. Radar texture, 

in particular, provides important information about the heterogeneity of the land 

surface, a feature that is very sensitive to man-made features found in built 

environments. The most important limitation of radar imagery is the effect of 

topography on the magnitude of radar backscatter. Hill and mountain sides interact 

with the radar beam generating ranging anomalies that can be confused with the 

presence of artificial features and distort the image geometry. Some of the terrain 

generated backscatter can be normalized through terrain correction and severe layover 

effects should be masked out. However, areas where a single pixel captures the entire 

extent of a slope are affected by foreshortening distortions that are harder to remove. 

Given these issues, the utility of radar imagery for settlement mapping is mostly 

restricted to areas with minimal topographic variation. In this study area terrain 

distortions were located in a few isolated ridges at higher elevations in areas that were 
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not significantly populated. Terrain distortions were removed from the study area 

through the use of masks, although such an approach wouldn’t be appropriate for 

areas with major settlements located at higher elevations.  

Results from error assessment of the radar-based classification of built vs. non-

built cover show that there is a fair amount of commission error where built and non-

built classes tend to be confused. This finding confirms that radar texture is not 

efficient for urban mapping as a single data source. Still, our results show low levels 

of omission error indicating that radar texture is an effective way of detecting some of 

the built land cover that was missed by the optical imagery. Close inspection of the 

image classification results shows that radar texture is particularly effective in 

detecting small settlements. This is likely due to the 12.5 m spatial resolution of the 

ERS-2 radar imagery, relative to the 30 m Landsat ETM image data.  

Comparing the SMA-based land cover classification and the radar-based 

built/non-built classification with the CERSGIS land cover land use map showed that 

both optical and radar imagery have limitations in detecting accurately all built 

features independently. While there was a fair amount of omission in the SMA-based 

classification, the radar-based classification had a higher incidence of commission 

inaccuracies. By combining the SMA- and radar-based land cover classes the attempt 

was made to overcome the limitations of each independent classification and generate 

a more accurate depiction of the urban environment in the study area.  
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This study proposed a novel characterization of the urban context based 

exclusively on pattern characteristics of the landscape. A series of landscape metrics 

were estimated for built and vegetation land cover maps with the goal of 

differentiating areas based on the degree of landscape fragmentation. The assumption 

is that as city or settlement centers become more densely urbanized the built 

environment becomes more compact, whereas towards the outskirts of the city the 

land cover conversion brought by urban expansion means higher fragmentation and 

dispersion. The pattern-based urban context definition is based on relative 

fragmentation of both the built environment and vegetation land cover. A compact 

urban core is found at the most urbanized end of the spectrum, with a predominant 

built land cover class and very low levels of landscape fragmentation. As distance 

from the compact urban core increases, the built environment becomes increasingly 

fragmented giving way to urban dispersion and interspersion (Figure 40).  

 

 

 

 

Figure 40: Pattern-based urban context gradient 
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With distances from the city center reaching beyond the city limits, landscapes 

change to scattered settlements and sparsely populated areas where fragmentation of 

the built environment peaks, and that is gradually replaced by areas transitioning from 

their natural state into cleared spaces suggestive of potential settlement. In the least 

urbanized end of the spectrum unsettled lands are identified by lower levels of 

fragmentation in the vegetation land cover, while in transitioning spaces we start to 

see clearings linked to a growing fragmentation of the vegetation cover. 

The pattern-based definition of the urban context used in this study captures a 

wider range of urban environments than traditional rural/urban classifications. By 

differentiating the compact urban city center from highly fragmented suburban areas 

and scattered settlements, the urban context definition identifies important pattern 

differences among inhabited spaces.  

Landscape metrics were used to estimate relative levels of landscape 

fragmentation using different levels of aggregation that allowed comparing the 

definition of urban subzones at different scales. The smallest unit of analysis, a 450 m 

grid cell, detected small compact neighborhoods, while the largest unit (14400 m) 

identified very diverse sub-metropolitan areas. Comparing results from estimated 

levels of fragmentation at different scales showed convincingly that greater detail of 

landscape pattern was detected with smaller units of analysis. Larger cells captured a 

wider range of morphological features which tended to blur differences between 
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urban subzones and homogenizing areas that smaller cells showed were rather 

heterogeneous. 

Results from the error assessment of the 450 m urban context classification 

suggest that the top five most urban classes in the urban context classification match a 

significant share of the areas manually labeled as built by CERSGIS. With a 

producer’s accuracy reaching 94.4%, the pattern-based urban context map seems to 

identify as urban most of the areas classified as built by the CERSGIS map. This 

agreement-disagreement table, however, doesn’t provide any detail about the 

accuracy of the transitional classes detailed in the urban context map, since the 

aggregated class only differentiates built from non-built. The lower 67.8% user’s 

accuracy indicates problems of confusion between built and non-built classes, an 

issue that is somewhat expected given the discrepancies in scale and classification 

schemes between the two land cover maps. By aggregating the land cover classes into 

a uniform grid cell unit of analysis, important information about individual urban 

features was lost, but this was a trade-off in order to be able to incorporate contextual 

measures of fragmentation and measures of texture into a more complex urban class 

that would be compatible with demographic analysis. 

B. Scale, fertility, urban context and living arrangements 

Results from section 5.2 indicate that the association between fertility, urban 

context and living arrangements varies with different levels of aggregation. The R
2
 

obtained in the OLS regressions indicate that the variance in fertility explained by the 
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selected independent variables of interest and controls fluctuates between different 

scales of analysis. An R
2
 of 0.36 was obtained for the smallest unit of analysis. As 

cell size increased to 1800 m the R
2
 dropped to its lowest value of 0.32 and then 

increased to a maximum of 0.63 for the largest cell of 14400 m. Even though we see a 

highly improved R
2
 for the larger cell sizes it is important to note that very few of the 

independent variables of interest and controls are significant predictors of fertility at 

this scale. This result indicates that even though the independent variables explain a 

fair amount of the variance in the dependent variable they fail as individual predictors 

of fertility levels. At this coarsest spatial scale the independent variables seem to be 

capturing compounded effects that are a product of contextual interactions and also 

aggregation effects that are a manifestation of the ecological fallacy. This result is not 

surprising given that there are significant differences between associations estimated 

at the individual level and those estimated for aggregated units. Ecological 

correlations in effect vary dramatically based on the heterogeneity of the data 

between subareas as well as on the homogeneity of the data within subareas 

(Robinson 1950). By increasing the cell sizes the variance of both independent and 

dependent variables are averaged, creating areas that are very homogeneous between 

them. On the other hand, with smaller cell sizes the variance of independent and 

dependent variables increases, generating areas that are very homogeneous within 

them and heterogeneous between them.  
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1. Scale and the association between urban context and fertility 

Defining urban context with different size units of analysis provided an important 

first view of the effect that scale has on the strength of the association between 

household structure, urban context and fertility levels in the study area. Comparing 

the results from OLS for each cell size we can conclude that when assessing the 

connection between urban context and fertility levels, the relative size of the urban 

unit of analysis plays an important role. As was discussed in the previous section, 

while larger units of analysis tend to explain more of the variance in fertility levels 

the urban context classes are more significant in explaining fertility for smaller cells. 

The two smallest units of analysis (450 and 900 m) have the highest number of 

significant urban classes explaining fertility levels. In the case of the 450 m cells, the 

four most urban classes have significantly lower fertility levels than the average for 

the study area, whereas the less urban class, fragmented transition, has significantly 

higher fertility than the average for the study area. When doubling the cell size to 900 

m, results show that the five most urban classes within the urban context have 

significantly lower fertility levels than average, including the scattered settlement 

class. The lowest fertility level is found in the fragmented large patches urban class 

within the group of five most urban contexts. At this scale the compact urban class 

has fertility levels comparable to those found in scattered settlements in the 

countryside. With the increase in cell size we see that areas identified as fragmented 

transition lose their significant positive association with fertility levels. The 

demographic characteristics of these transitional areas found in the least urbanized 
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end of the urban spectrum seem to be small enough to be absorbed by other urban 

classes. When doubling the cell size to 1800 m the number of significant urban 

classes explaining fertility levels drops to three, with the least urbanized class, 

fragmented sub-urban, losing its significance. This result shows that by defining an 

even larger urban subzone the demographic differences that were evident within the 

city at smaller scales tend to disappear. We can infer that the demographic 

characteristics of the fragmented transition class are better captured by the smallest 

unit of analysis (450 m) whereas the ones of the fragmented suburban class are better 

captured by the slightly larger 900 m one.  

With a cell size of 3600 m the urban context classes that are significantly 

associated with lower fertility levels slide down from the most urban end of the urban 

context spectrum into transitional classes. At this scale, lower fertility levels are seen 

for three intermediate urban context classes: fragmented large urban patches, dense 

and dispersed small urban patches and fragmented suburban. With the larger cell size, 

the compact urban area lost its significance in explaining lower fertility levels in the 

study area. This result indicates that the larger urban contexts defined by the 3600 m 

cell fail to capture some of the demographic characteristics found in the most 

consolidated parts of urban areas. The 3600 m cell absorbs the city center and the 

demographic characteristics that were evident in smaller cell sizes are averaged out. 

With a cell size of 7200 m none of the urban context classes are significant 

explanatory variables for fertility levels in the study area. This means that at this scale 
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the larger subzones fail to capture any significant association between urban context 

and fertility levels once all the control variables are added. The increased variance in 

demographic characteristics captured by the 7200 m cell blurs any possibility of 

distinguishing significant fertility patterns within the urban context. However for the 

largest unit of analysis, 14400 m, two of the six urban context classes appear to have 

significant effects on fertility levels. The compact urban area and fragmented 

suburban classes show comparable lower than average fertility levels. This large cell 

identifies demographic differences that are very similar to the classic distinction 

between urban and non/urban areas.  

Comparing results from OLS for different cell sizes we can conclude that the 

smallest unit of analysis (450 m cell) captures the wider diversity of demographic 

characteristics throughout the urban context. The smallest cell not only identifies 

differences within the city by pinpointing specific neighborhoods where fertility 

levels are the lowest and the highest, it also allows identifying areas in the 

countryside where fertility levels are higher than average. This smallest unit of 

analysis provides a fairly complete picture of the urban gradient that detects both ends 

of the urban context spectrum. 

2. Scale and the association between household structure and fertility 

Results from OLS for different units of analysis show that the association between 

fertility and family structure is fairly stable throughout scale for small cell sizes (450 
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to 1800 m). While female headed households, single parent households and larger 

extended family households are consistently associated with lower fertility levels, 

households with a head residing away or a head belonging to the Ga ethnic group 

tend to be associated with above average fertility. The correlation that was identified 

between extended family residence and lower fertility levels is a rather unexpected 

result given that previous research in developing countries linked household size to 

higher reproductive levels (Bongaarts 2001). This finding indicates that the small 

units of analysis used in this study are effective in detecting demographic patterns 

that are characteristic of urban environments where fertility levels tend to be below 

average but at the same time high costs of living combined with shortage of housing 

encourage sharing of quarters. In effect, extended family living arrangements are 

fairly prevalent in West African cities where migrants rely heavily on family 

networks.  

On the other hand, as was the case for the urban context variables, the 

significance of the living arrangement variables seems to decrease substantially with 

larger units of analysis. Results for larger cell sizes (3600 to 14400 m) indicate that 

very few of the independent variables pertaining to living arrangements are 

significantly associated with fertility levels. For cell sizes between 3600 m and 14400 

m, OLS regressions identified a significant association between polygamist 

households and fertility levels. However, it has to be noted that those effects are 

inverted with differing cell sizes. For the smaller 3600 m cell size, polygamist 

households are associated with significantly lower fertility levels than average, a 
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result that is consistent with previous research in the region. For larger cell sizes 

(7200 and 14400 m) the effects of polygamist households on fertility are reversed 

showing higher levels of fertility than average. This result is unexpected since 

research has shown that women sharing a husband tend to have less access to their 

partners and less exposure to intercourse (Bongaarts, Frank and Lesthaeghe 1984; 

Dodoo 1998). Examining closely the distribution of polygamist households in the 

study area, it is evident that they tend to be localized, with very few rural areas 

showing high prevalence of polygamy. With larger cell sizes, the share of subzones 

where polygamy is practiced increases, eliminating any of the local differences that 

were detected by small cell sizes. It is apparent that polygamy is generally practiced 

in our study area in few small rural areas which are not captured by the large cell size 

unit of analysis. 

Consistently higher fertility levels are seen throughout most of the scales of 

analysis for households where the head of household has a different usual residence 

and households where the household head belongs to the Ga ethnic group. These 

results are significant regardless of the size of cell used for the analysis showing that 

they are not localized effects but rather a widespread association between a type of 

household and higher fertility. The positive association of the Ga head of household, 

a patrilineal ethnic group, with fertility levels confirms findings in the region that 

identified significant differences in fertility outcomes between matrilineal and 

patrilineal lines of descent. Takyi and Dodoo (2005) found that women in matrilineal 

ethnic groups tend to be more successful in achieving their reproductive preferences 
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than those belonging to patrilineal ones. The positive association found between 

household heads residing away and higher fertility levels on the other hand is a result 

that is somewhat surprising, since one would expect that women residing in 

households where the head is not regularly present would have fewer opportunities to 

get pregnant. However, this result indicates that even when the head resides away the 

structure of the household is preserved, a trend that suggests the prevalence of 

patterns of temporary or circular migration that seem to be associated with higher 

fertility levels. 

Lower fertility levels are seen throughout the study for areas where a significant 

share of women aged 15 to 20 remain single, a result that indicates the importance of 

delaying marriage as an significant driver of fertility decline in the region (Weeks et 

al. 2010).  

C. Urban context, fertility and living arrangement spatial components  

Results from the OLS regression with the 450 m unit of analysis indicate that 

there is a significant association between urban context, living arrangements and 

fertility. As expected, significantly lower fertility levels are seen in areas that are on 

the more urbanized end of the urban spectrum and higher fertility levels are seen on 

the least urbanized end of the spectrum. At the same time, significantly lower fertility 

levels are observed in single parent households and female headed households, while 

significantly higher fertility levels are found in households where the head has a 

different usual residence and the head belongs to the Ga ethnic group. The OLS 
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regression produced nine variables of interested with significant association to 

fertility with an R
2
 of 0.36. The model fit was higher upon correcting for spatial 

autocorrelation in the independent variables through the use of spatial filters. Results 

from the OLS using spatially filtered variables show a higher R
2
 of 0.42 and some 

subtle changes in the significance of the independent variables of interest. The 

strength of the effects of the urban context variables changed slightly when including 

controls for spatial components for all the other independent variables. While in the 

original OLS the dense and dispersed small urban patches class had the exact same 

effect on fertility as the fragmented suburban class, when controlling for spatial 

components in the OLS the dense and dispersed small urban patches class exhibits a 

slightly higher coefficient. The same is observed for the less urban fragmented 

transition class where adding the spatial component controls increases the positive 

coefficient from the original OLS. Even though none of the urban context variables 

were spatially filtered themselves it is evident that by controlling for spatial 

components in the different independent variables some of the spatial components of 

the urban context variables are captured. The spatially filtered OLS shows a 

strengthening in the association between fertility levels and urban context. By 

filtering the independent variables the model is able to isolate spatial dependence in 

the model and capture the effects of urban context on fertility without any of the bias 

of the neighbor effects.  

When controlling for spatial components in the independent variables we can 

identify significant changes in the association between living arrangements and 
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fertility levels. While only two living arrangement variables had significant effects on 

fertility for the original OLS the spatially filtered OLS identifies five living 

arrangements with significant association to fertility levels. Single parent and female 

headed households are negatively associated with fertility, although for single parent 

households lower fertility is solely explained by the filtered component of the 

variable. This result indicates that lower fertility levels found within single parent 

households do not follow any significant spatial distribution pattern but are rather 

found in random places through the study area. On the other hand, the lower fertility 

levels detected in households with female heads are the product of both filtered and 

spatial component of the variable. This means that there is a significant spatial pattern 

in the location of the female headed households with lower fertility where 

neighboring female headed households are influenced by the lower fertility levels. 

This result confirms previous findings in the region that associate female headed 

households with fewer children than male headed households (Lloyd and Gage-

Brandon 1993).   

Larger households with numerous extended family members are significantly 

associated with fertility in the spatially filtered OLS, although that association can be 

decomposed into opposite effects. While the filtered variable has a significant 

positive correlation to fertility, the spatial component has a significant negative 

correlation to fertility. This result indicates that even though overall larger households 

can be associated with women having larger families, in localized areas such as cities 
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the preference for fewer offspring may be associated with the forced sharing of 

residences due to urban housing constraints. 

A finding that is worth mentioning is the significance of the spatial component for 

two variables that were not significant in any of the original OLS regressions. The 

spatial component of the variable grandchildren of the head residing in the household 

has a significant positive association with fertility while the spatial component of the 

variable two parent households has a significant negative association with fertility. 

This result indicates that higher fertility levels are found in households with 

grandchildren of the head but only when those are clustered together, a common 

occurrence in smaller settlements in the more rural areas. On the other hand lower 

fertility levels are found in households with children that have two parents residing in 

the household but only when those households are clustered together, particularly in 

more urbanized areas where the nuclear family model is spreading. 

The use of a spatial error model that controlled for spatial autocorrelation in the 

error produced satisfactory results based on the comparison of measures of goodness 

of fit. This last model included a spatial autoregressive error term in the regression 

that controls for the spatial autocorrelation that wasn’t captured by the spatial filter. 

Results from the spatial error model show an improved peudo-R
2
 of 0.53 with the 

Akaike Information Criterion (AIC) decreasing from -440 to -1143.  

The effects of the urban context on fertility levels are slightly modified by the 

spatial error model in comparison to the spatially filtered OLS regression. Even 
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though the same urban classes remain significant, the strength of the association 

between urban class and fertility level changed slightly. In the spatially filtered OLS 

significant negative effects on fertility were the highest for the fragmented large 

urban patch class, followed by dense and disperse small urban patches, fragmented 

suburban and were the lowest for the compact urban class. In the case of the spatial 

error model the strongest significant negative effect on fertility remains in the 

fragmented large urban patches class, but is then followed by the compact urban and 

then the dense and dispersed small urban patches classes with the lowest effects 

found in the fragmented suburban class. All coefficients for fragmented large urban 

patches, dense and dispersed urban patches and fragmented suburban classes 

decreased in the spatial error model compared to the filtered OLS, while the 

coefficient for the city centric compact urban class increased from 0.049 to 0.054. 

Results from the spatial error model for the urban context show that when controlling 

for unaccounted spatial autocorrelation in the error term, the strength of the 

association between fertility and urban context increases significantly for the more 

consolidated compact urban parts of the city. Additionally it is evident that by 

controlling for the unaccounted spatial autocorrelation, urban classes with 

intermediate effects on fertility levels shift towards the city center and the lowest 

effects move towards the city’s periphery. The highest negative effects on fertility 

remain on the fragmented large urban patches found within the city, an effect that is 

consistent with our findings in the filtered OLS and the standard OLS. This result 

indicates that by controlling for spatial autocorrelation in the model the gradient 
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effect that identified stronger negative impacts on fertility towards the outskirts of the 

city shift towards the city center. This finding indicates that there are important 

spatial effects in the association between fertility levels and urban context, with 

attitudes towards lower reproductive levels initiating within the most urban areas of 

cities and slowly spreading into contiguous areas.  

The association between living arrangements and fertility remains very similar for 

the spatial error model when compared with the spatially filtered OLS. Significantly 

lower fertility levels are seen in single parent, female headed and larger extended 

family households. The spatial distribution of households with grandchildren of the 

head appears to be an important driver of higher fertility levels, as was also observed 

for the spatially filtered OLS model.  This is particularly evident in small settlements 

in rural areas where compound living is common and higher fertility prevails in 

households with different generations.  

Two variables that are significant in the spatial error model that were not 

significant in any of the previous OLS models are households with foster children and 

polygamist households. For both of these variables the spatial distribution of the 

households plays an important role in shaping fertility levels. Households with foster 

children that have an above average fertility level tend to be clustered together just as 

households that practice polygamy that have a below average fertility level are likely 

to be located in close proximity of each other. These two results point to an 

association between living arrangements and fertility that is representative of rural 



152 

 

households where the practice of fosterage is accompanied by higher reproductive 

levels and where polygamy is more prevalent. 

D. Urban context, fertility and living arrangements: spatial heterogeneity 

Spatial variance in the association between household structure, urban context and 

fertility is a sign of the incidence of spatial heterogeneity when modeling fertility 

with the selection of independent variables. GWR was used to examine the spatial 

patterns of the variance in the association between dependent and independent 

variables. GWR is particularly useful to visualize the spatial patterns of the effects of 

each independent variable on the dependent variable. Examining the results from the 

GWR revealed interesting patterns in the way that the independent variables are 

associated with fertility levels. The urban context, for example, shows both positive 

and negative association with fertility, a result that is consistent with findings in 

previous sections. Higher fertility levels are consistently seen in the more rural areas 

that coincide with the fragmented transition class as it was defined in the urban 

context map. Two hot spots of higher fertility are also evident within the urban areas 

of Accra and Tema, indicating very specific areas within the most consolidated urban 

areas where reproductive levels are comparable to those found in rural areas. These 

areas with higher fertility levels found within the city tend to correspond to very 

centric neighborhoods where it is very likely that slum-like living conditions tend to 

replicate living environments found in the countryside. This result confirms the trend 

identified in the OLS and spatial error models where within urban areas the more 
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consolidated and poor compact city centers tend to have higher fertility in some cases 

at levels comparable to those seen in rural areas. 

In terms of living arrangements, results showed consistently that single parent 

households have significantly lower fertility levels regardless of where those 

households are located. Examining the coefficients produced by the GWR, it can be 

seen that there are spatial patterns in the distribution of the effects of single parent 

households on fertility. It is clear that single parent households tend to have higher 

fertility levels in rural areas, where it’s possible that a parent being away is the 

product of temporary out-migration. Higher fertility levels are also evident in 

households with single parent households found in the rural areas immediately 

adjacent to Accra and Tema. These areas are rapidly changing with the expansion of 

the city, but despite their proximity to the city they are not yet fully urbanized and 

seem to mirror some of the rural demographic characteristics.  

In the case of female headed households, the pattern identified for single parent 

households and urban context is replicated but more pronounced than for the latter 

two variables. Lower fertility levels in female headed households seem to spread 

following a network of settlements with a noticeable spike in fertility within the city 

of Accra. This localized hot spot of higher fertility relates again to the most 

consolidated and poor city center, an area that regardless of being found within the 

heart of the city shows demographic characteristics comparable to those found in 

rural areas. It is worth noting that this hot spot found within the city of Accra is 
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immediately surrounded by a lower fertility buffer that matches the location of 

wealthier fragmented suburban as were described by Yeboah (2003). 

Finally, results from GWR show that the strongest association between fertility 

and households where the head has a different usual residence is mostly found in 

inland rural areas. This is a result that is not surprising given that these are the areas 

that are likely to see the highest rates of temporary/circular out-migration. 

Results from this study indicate that there is a significant connection between 

fertility and urban transitions in this region of West Africa. Through the use of a 

pattern-based definition of urban context this study was able to identify a more 

detailed connection between degree of urbanization and fertility levels. The urban 

gradient approach identified how diverse urban contexts have diverse reproductive 

preferences in our study area. Research in the region has shown that overall fertility 

levels tend to be lower in the city in comparison to the countryside (Caldwell 1967; 

Casterline 2001), yet clear differences in fertility levels taking place within the city 

were identified in this study. The more consolidated urban city center shows fertility 

levels comparable to rural areas, thus differing from those seen in the rest of the city. 

At the same time, the lowest fertility levels are clearly seen towards the edges of the 

city where suburbanization is spreading and accommodating the wealthiest more 

westernized population. These more westernized populations are leaving behind 

traditional living arrangements which are being replaced by a surge in single parent 

households and especially in female headed households. 
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This study examined the diversity of demographic characteristics that define 

urban contexts in a region of West Africa. The main goal was to evaluate if there is a 

connection between the degree of urbanization of an area, patterns of living 

arrangements and women’s reproductive levels. An alternative definition of 

urban/rural spaces is proposed using an urban gradient approach that is solely based 

on the pattern characteristics of the landscape. Through the use of remote sensing and 

GIS, an urban context definition is created mapping urban spaces in a manner that is 

independent of demographic and socio-economic indicators, thus allowing to gauge 

how closely tied together urban and fertility transitions are.  

Results from this research indicate that there is a strong connection between 

fertility levels and urban context in the coastal areas of Ghana. The more urbanized 

classes of the urban context show significantly lower than average fertility levels 

while the least urbanized classes show significantly higher than average fertility 

levels. These results not only allow us to differentiate rural from urban fertility levels, 

they also identify differences in fertility levels within the city. While the poorer, 

densely populated city centers tend to have higher fertility levels than the rest of the 

city, lower fertility levels are identified in wealthier consolidated neighborhoods. 

Reproductive levels in the wealthier parts of the city seem to be leading the trend 

towards fertility decline, whereas the limited access to resources of poor 

VII. Conclusions 
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neighborhoods seems to be replicating rural living conditions within the city and 

show reproductive levels comparable to those found in the countryside.  

It is important to note that even though there are significant differences in 

fertility levels within the city, those differences are considerably influenced by spatial 

effects. By examining the spatial components of the association between fertility 

levels and urban context it became evident that a significant share of the correlation 

between the two variables is the product of neighborhood effects. Wealthier 

neighborhoods with below average fertility levels have significant impacts on the 

reproductive levels of adjacent neighborhoods. This result indicates that fertility and 

urban transitions are very closely tied together with fertility levels being the lowest 

for the city center and gradually growing as distance from the city center increases. 

Even though this study only provides a cross-sectional approximation to the 

association between fertility and urban contexts, it is reasonable to assume that the 

significance of the spatial effects is an indicator of the importance of spatial diffusion 

in the spread of family planning within the urban environment. The importance of the 

spatial components points to the significance of geographic diffusion patterns in the 

spread of family planning such as those  identified through the history of the 

demographic transition in western Europe in the late XIX century (Watkins 1991). In 

this Ghanaian urban context the high density of highly urbanized environments 

promotes the accumulation of resources, the spread of education and the expansion of 

social networks that facilitate the diffusion of innovations such as delaying marriage 

and the use of contraception. As Lesthaeghe and Surkyn (1988) pointed out, cultural 
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innovations tend to spread from higher to lower socio-economic strata through 

imitation. However, this diffusion process is highly constrained by traditional cultural 

and social structures.  

In West Africa, cultural context has traditionally played an important role in 

shaping reproduction decisions, where numerous offspring ensure the care of the 

elderly and the survival of the lines of descent (Caldwell and Caldwell 1987). This 

research explored the connection between social structures found within the 

household and fertility levels by examining how different living arrangements 

correlate to fertility levels. The findings indicate that there are clear patterns that 

connect household structure, fertility, and urbanization. Female headed and single 

parent households are consistently linked to lower than average fertility levels, a 

result that associates decreasing fertility levels with the spread of smaller nuclear 

households that is taking place in the developing world (Bongaarts 2001). At the 

same time, larger extended family households are paradoxically associated with 

below average fertility levels because of important spatial effects. Even though 

previous research in the region linked large households with above average fertility 

levels, findings from this research indicate that there is a significant transformation in 

the spatial distribution of living arrangements and how they connect to fertility. While 

larger than average households used to be representative of rural areas, where fertility 

tends to be higher, the scale and pace of urbanization in the region has made access to 

housing in cities very scarce and turned extended family housing into a city 

phenomenon. Given the lack of resources sharing quarters has become a predominant 
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feature of the West African city, where larger households are significantly associated 

with lower than average fertility levels.  

On the other hand, households where the head has a different residence are 

associated with above average fertility levels, a result that indicates that short term or 

temporary migration is associated with higher fertility. This is in contrast to the 

negative association found with households where the head moved from a different 

region in the last five years. Even though migration and especially migration to the 

city has been linked to declining fertility levels (White et al. 2005), this research 

indicates that for the specific case of short term migration that relationship is 

reversed. The high mobility of the household head is characteristic of poor rural areas 

where traditional household structure and reproductive behaviors aren’t significantly 

disrupted by temporary migration.  

This research compared different scales of analysis to assess the association 

between land cover and demographic patterns finding that smaller units of analysis 

captured the widest range of demographic characteristics. However it is important to 

recognize that these results are still limited by the level of aggregation. Using an even 

smaller cell size may allow smaller neighborhoods and rural enclaves to be identified 

that are missed by the 450 m cell. Although using a uniform grid cell unit of analysis 

is not necessarily the optimum way to characterize the urban environment, in this 

study the uniform unit allowed merging land cover and demographic data originally 

collected at different scales.  
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Even though the results confirm that diverse urban contexts are associated 

with diverse demographic patterns, it is important to recognize that the pattern-based 

definition of the urban context is still an arbitrary definition of space. There is no 

consensus on what constitutes an urban place and that means that there will be many 

different ways of characterizing urban spaces. This study proposes defining urban 

context based on characteristics of landscape fragmentation, an approach that is easily 

replicable in other data poor environments. At the same time, it is important to 

recognize that the urban context classification derived in this study is a relative 

measure of degree of urbanization that is based on the fragmentation characteristics of 

this particular landscape. Other research will have to test its replicability in different 

geographic settings. 

These results show that urban contexts are much more diverse than portrayed 

by traditional rural/urban classifications, both from a demographic perspective and an 

urban pattern perspective. This research is a novel attempt at explaining the 

differences that exist between rural and urban fertility levels in developing countries 

where the fast pace of urbanization is creating very diverse urban environments. 

Further research is necessary to expand the understanding of how the urban context is 

linked to demographic patterns and more specifically to elucidate how emerging 

urban environments in the developing world are shaping fertility levels.  Future 

research includes refining the pattern-based definition of the urban context by 

incorporating a multiple end-member component to the spectral mixture analysis and 

by decreasing the cell size unit of analysis. Improvements in the modeling of the 
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association between urban context and demographic characteristics could be attained 

through structural equation and multi-level approaches. Finally, given the global 

urbanization trends, it would be interesting to compare patterns of land use land cover 

change with changes in demographic patterns.    
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A. Landscape metrics for all cell sizes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Landscape and class metrics for 14400 meters cell unit of analysis 
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Figure 42: Landscape and class metrics for 7200 meters cell unit of analysis 
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Figure 43: Landscape and class metrics for 3600 meters cell unit of analysis 
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Figure 44: Landscape and class metrics for 1800 meters cell unit of analysis 
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Figure 45: Landscape and class metrics for 900 cell unit of analysis 
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Figure 46: Landscape and class metrics for 450 cell unit of analysis 
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B. Urban context definitions for all scales of analysis 

 

Figure 47: 450 meter urban context classification 

 

Figure 48: 900 meter urban context classification 
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Figure 49: 1800 meter urban context classification 

 

Figure 50: 3600 meter urban context classification 
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Figure 51:7200 meter urban context classification 

 

Figure 52: 14400 meter urban context classification 


