

The Urban Transition in Ghana and Its Relation to Land Cover and Land Use Change (LCLUC) Through Analysis of Multi-scale and Multi-temporal Satellite Image Data

Doug Stow

Department of Geography San Diego State University

NASA Interdisciplinary Research in Earth Science Program

The Urban Transition in Ghana and Its Relation to Land Cover and Land Use Change Through Analysis of Multi-scale and Multi-temporal Satellite Image Data

Douglas Stow (PI), John Weeks (Co-PI), Pete Coulter (Project Manager), Li An (Co-Investigator), Magdalena Benza-Fiocco (PhD student), Sory Toure (PhD Student), Ace Shih (MS student), Sean Taugher (MA student), Milo Verjaska (MS student), Nicholas Ibanez (BS student)

Ryan Engstrom (PI), Avery Sandborn (MA student) – The George Washington University

David Lopez-Carr (PI) --University of California Santa Barbara

Samuel Agyei-Mensah and Foster Mensah (Collaborators) --University of Ghana Legon

UNIVERSITY OF GHANA

Presentation Objectives

Procedures and preliminary results of satellitebased land cover and land use (LCLU) mapping and change analyses

- Regional scale Landsat ETM+/OLI
- Urban scale Commercial high spatial resolution satellite data

NASA Project Overview

Drivers and impacts of land cover and land use change (LCLUC) in Ghana

- Regional scale rural to urban migration as a driver of LCLUC
- Urban scale urban densification and expansion as an impact on people's quality of life

Study Areas: Regional & Urban

Districts According to Net Out- or In-Migration between 1995 and 2000

Net Outmigration

Rural village

Dense urban settlement

CERSGIS Reference 2000 Land Cover/Land Use Map With MODIS IGBP Cloud-fill

Inter-regional LCLU classification scheme

(1) Forest

(2) Non-forest vegetation (open secondary forest, shrub thicket and savanna)

(3) Agriculture (mixed w/vegetation and commercial)

(4) Urban/built (city core, suburban, peri-urban, village)

Intra-urban LCLUC classification scheme

(1) Undeveloped

(2) Urban agriculture

(3) Urban Residential

(4) Urban Non-residential

Peri-urban residential development

Urban densification

Agribusiness expansion

Mixed agriculture and natural vegetation

New suburban residential

Challenges of Remote Sensing in Ghana

- Prevalent continuous cloud cover (Dec-Apr most cloud free; dry season)
- Partial clouds and cloud shadows
- Thick atmospheric optical properties on clear days (water vapor and aerosols)
- Wind borne dust Harmattan effect: dusty West African trade wind in winter
- Minimal Landsat 5 Thematic Mapper coverage
- Landsat 7 ETM+ scan line corrector off 2003-13
- Most agriculture mixed with natural vegetation
- Soil and metal roofs contain iron oxides

Regional Scale LCLU Mapping and Change Identification

Single Date and Temporal Composites

Pete Coulter and Nick Ibanez

Objectives

- Identify, map, and quantify land cover and land use and change (LCLUC) within four populated regions of Ghana
- Regions of interest are:
 - Greater Accra
 - Central
 - Ashanti
 - Eastern
- c. 2000 and 2010 periods corresponds to national census data
- Using Landsat data to the greatest extent possible (well registered, LEDAPS surface reflectance, high temporal resolution)

Interregional LCLU Mapping Process for Accra Path/Row

Study Areas: Regional & Urban

Greater Accra Landsat Footprint (193/056)

Regional Landsat Data: Greater Accra Best image available (2002 Dec. 26)

Draft Image Classification Product

2010 Regional Landsat Data: Typical image with cloud cover & SCL-off issues

Regional Landsat Data: SCL-off Data Gaps

Regional Landsat Data:

Usable data frequency -- 48 images 1999-2013 < 33% cloud

c.2010 Landsat 7 ETM+, 2009 011 (Jan 11)

c.2010 Landsat 7 ETM+, 2009 331 (Nov 27)

c.2010 Landsat 7 ETM+, 2009 363 (Dec 29)

c.2010 Landsat 7 ETM+, 2010 030 (Jan 30)

c.2010 Landsat 7 ETM+, 2011 017 (Jan 17)

c.2010 Landsat 7 ETM+, 2009 011 (Jan 11)

c.2010 Landsat 7 ETM+, 2009 027 (Jan 27)

c.2010 Landsat 7 ETM+, 2009 331 (Nov 27)

c.2010 Landsat 7 ETM+, 2009 363 (Dec 29)

c.2010 Landsat 7 ETM+, 2010 030 (Jan 30)

Creating Temporal Composites (c. 2010 Landsat)

- LEDAPS surface reflectance products are not sufficiently radiometricallynormalized to create composite image sets; + seasonality effects
- Custom radiometric normalization is required
- Bright (urban) and dark (water) training sites were used as pseudo-invariant features (PIF) for radiometric normalization
- Following normalization, composites were created

Radiometric Normalization: 2002 as Reference

Radiometric Normalization: Water/Urban Targets

c.2010 Landsat 7 ETM+, NDVI Stack Max (9 images)

Landsat 7 ETM+, Red-Blue Normalized Diff. Stack Max (9 images)

c.2010 Landsat 7 ETM+, Temporal Composite RGB (filled based on date priority, contains artifacts)

Preliminary Results

- Derived image products (e.g., normalized difference products) aid classification of features of interest
- c. 2010 imagery is heavily affected by cloud cover and SLC-off issues
- Substantial manual editing of image classification products is likely to be required

Regional Scale Mapping and Change Detection

LCLUC Analysis w/ Discrete Class Temporal Sequences

Ace Shih

Problem and Objective

- Dense multi-temporal stacks of processed Landsat TM/ETM+/OLI data are readily available for LCLUC analyses
- Most studies of dense stacks analyze temporal trajectories of continuous value image derivatives (e.g. spectral indices)
- Discrete class time series is another approach
- Clouds, shadows, haze and ETM+ SLC-off create no data/no class pixels
- Objective 1: Hindcast 2000 and 2010 based on 2002 and 2013 image classification results
- Objective 2: Determine the timing and type of LCULC within a decadal time series of Landsat data using a discrete class time series approach with spatial and temporal filtering

Study area

115.8km

12 Feb 2003 (2003043)

13 Dec 2003 (2003347)

Process Flow

Training Approach

- Persistent LCLU features throughout record length
- Urban at beginning of period
- Forest at end of period
- Agriculture at beginning and end of period

Temporal filter

Change map spatial filter: focal majority

ι⊥				
NV	AG	AG		
AG	AG	AG		
UB	UB	AG		

+1

NV	AG	AG
AG	AG	AG
UB	UB	UB

LCLU Change Map

20 km

legend	
	NV change to AG
	Non-urban change to urban
Gray scale	No change

Figure 4. Preliminary evaluation of LCLUC for greater Kumasi area between 2001 and 2007 based on classification of Landsat ETM+ data. "Built" land cover increased substantially particularly in northern and eastern Kumasi, where high spatial resolution satellite image data are available for more detailed analyses.

Urban Scale

High Spatial Resolution Mapping of LCLU and Change in Accra

Sory Toure

Objectives

- Generate LCLU maps for c.2000 and c. 2010
- Generate LCLU change maps between 2000 and 2010

Data

High Res. Data Composite c. 2000:

- Ikonos • 02/10/2000
- Ikonos • 05/22/2002
- QuickBird 04/12/2002

Asikasu Adaiso Bawjla • QuickBird

04/12/2002 • QuickBird 01/12/2010

Study area:

Methods

QuickBird 2002 Analysis

Segmentation:

- Multi-resolution segmentation
- 4 layers inputs (VNIR)
- Scale parameter 10
- Shape = 0.1
- Compactness = 0.5
- **Classification:**
 - NDVI >= 0.21, Vegetation
 - Soil, Built, Transportation classification feature inputs:
 - Mean red, blue, green, NIR
 - Std dev. neighbor pixels
 - Green Band texture 11 x 11; 9 x 9
 - NIR Band texture 11 x 11
 - NDVI
 - Features chosen through feature space optimization tool
- Generalization:
 - Built: Built + Transportation
 - Undeveloped: Soil + Vegetation

QuickBird 2010 Analysis

<u>Segmentation:</u>

- Chessboard segmentation
- 2002 segmentation result as Thematic layer
- Replicated similar segmentation in both dataset

• <u>Classification:</u>

- NDVI >= 0.18, Vegetation
- Soil, Built, Transportation classification feature inputs:
 - Mean red, blue, green, NIR
 - Neighborhood StdDev.
 - Green Band texture 11 x 11; 9 x 9
 - NIR Band texture 11 x 11
 - NDVI
- Features chosen through feature space optimization tool
- Generalization:
 - Built: Built + Transportation
 - Undeveloped: Soil + Vegetation

QuickBird 2002 Classification

QuickBird 2010 Classification

2002-2010 LCLUC Map

Results

	Undev. To Built	Built-No Change	Undev-No Change	Total
Undev. To Built	7	1	3	11
Built-No Change	0	24	5	29
Undev-No Change	0	2	20	22
Total	7	27	28	62

n = 62

Overall Accuracy: 82.26%

Preliminary Results

- Most new developments are residential, except near the airport and CBD
- Issues in separating between built and soil classes
- Texture features improve classification accuracy
- Manual editing performed to reduce misclassification in all three maps
- Next steps: Improve and expand classification scheme to Res., Non Res., Ag., and Undeveloped

Urban Scale

LCLUC – bi-temporal vs. multi-temporal classification

Kris Taniguchi

Objectives

- Map changes in Vegetation-Impervious-Soil (V-I-S) in Accra, Ghana with a time sequence of high spatial resolution multispectral satellite images using a post-classification approach and spatial/temporal filters; improvement over bitemporal approach?
- Determine appropriate spatial unit size for examining urban expansion and densification (on going research not reported here)

Study Area

Common area of five available high spatial resolution, mostly cloud-free images between 2002 and 2010

Quickbird MS imagery: April 2002

Quickbird MS imagery: January 2007

Quickbird MS imagery: November 2007

Quickbird MS imagery: January 2009

Quickbird MS imagery: January 2010

Reference Data

2002 to 2010 LCLUC map based on OBIA and manual editing

Methods

- Data Preparation:
 - Mask clouds/shadows
- Supervised classification on all 5 dates
- Spatial Filtering:
 - 3x3 focal majority and categorical aggregation using a 5x5 grid cell
- Temporal Filtering
 - Created rules for temporal filtering of the 4 "late" years (2007 to 2010)
 - If Vegetation in 2010, it is Vegetation
 - If Soil at time 1 (2007), apply majority filter
 - If Impervious at time 1, it is Impervious

VIS maps after spatial and temporal filters

Change Maps: A) 2002 to 2010, B) 2002 to temporal majority filter C) 2002 to temporal filter with conditional rules

Zoom of change maps

A) 2002 to 2010, B) 2002 to temporal majority filter C) 2002 to temporal filter with conditional rules

		2002		
		Veg	Impervious	Soil
2010	Veg	41%	4%	10%
	Impervious	14%	82%	25%
	Soil	45%	14%	65%
Temporal Majority Filter: 2002				
		Veg	Impervious	Soil
Late	Veg	56%	3%	14%
Period	Impervious	15%	87%	26%
	Soil	29%	9%	60%

Temporal Filter with

Conditional Rules:

Late	
Period	

2	002	
_		

2002			
	Veg	Impervious	Soil
Veg	52%	5%	13%
Impervious	16%	85%	27%
Soil	32%	10%	60%

Reference Data:			2002	
			Undeveloped	Built
	2010	Undeveloped	40%	0%*
		Built	15%	45%

Discussion/Conclusion

Temporal filter with conditional rules helped reduce the vegetation phenology changes in the urban areas *and* was able to capture vegetation reduction in the peri-urban areas compared to the temporal majority filter

Urban Scale

Moderate and High Spatial Resolution Mapping of LCLUC Change in Accra

Sory Toure

Future Research

1999 – 2014 Landsat time series for date and type of LCLUC

Incorporate Landsat 8 OLI data

LCLU mapping Kumasi, Obuasi and Cape Coast

Statistical analysis and agent based modeling of demographic and health variables vs. LCLU/C

Thank you !!

Questions ??

Methods

- Classification: supervised maximum likelihood
- Training data: persistent features through record length; urban at beginning; forest at end; agriculture at beginning and end
- Temporal filter: consider the previous and next dates of LULC maps to fill in no data pixels and filter illogical or erroneous change
- Spatial filter: applied to change map and considers each pixel's surrounding LULC, eliminating salt and pepper effect in change map

Before temporal filter

30 Nov 2002 (2002344) 12 Feb 2003 (2003043)

13 Dec 2003 (2003347)

After temporal filter

legend	
	UB
	NV
	Pure AG
	Mixed AG
	Fire scar or barren
	No data

30 Nov 2002 (2002344) 12 Feb 2003 (2003043)

Before Spatial Filter

After spatial filter

>

Mapping Unit Overlaid on Landsat

LCLUC Analysis

Built–No Change:

Objects classified as built in 2002 and 2010

<u>Undeveloped-No Change:</u>

 Objects classified as Undeveloped in 2002 and 2010

• Undeveloped to Built:

 Objects classified as Undeveloped in 2002 and Built 2010

• Water:

Masked manually

Methods

