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Abstract In this paper, we present an efficiency improvement for the algorithm

called AMOEBA, A Multidirectional Optimum Ecotope-Based Algorithm, devised

by Aldstadt and Getis (Geogr Anal 38(4):327–343, 2006). AMOEBA embeds a

local spatial autocorrelation statistic in an iterative procedure in order to identify

spatial clusters (ecotopes) of related spatial units. We provide an analysis of the

computational complexity of the original AMOEBA and develop an alternative

formulation that reduces computational time without losing optimality. Empirical

evidence is provided using georeferenced socio-demographic data in Accra, Ghana.
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1 Introduction

Since the early 1990s, spatial analysts shifted their focus toward the study of the

non-stationarity of spatial relationships (Getis and Ord 1992; Anselin 1995; Ord and

Getis 1995). Ignoring differences in distribution across space by solely using global

statistics can lead to the ecological inference fallacy (Robinson 1950). The need for

identifying local irregularities in spatial data emerged, in part, as a consequence of

the rise of highly disaggregated spatial data together with an increase in

computational capabilities (Fotheringham et al. 2000).

Spatial clusters are one of the forms of non-stationarity in space. They can be

defined as ‘‘a geographically bounded group of occurrences of sufficient size and

concentration to be unlikely to have occurred by chance’’ (Knox 1989). Spatial

clusters identification techniques are applied in many areas of inquiry, and are most

frequently used in epidemiology and criminology research (Aldstadt 2010).1

One of the most recent algorithms developed for this purpose is the AMOEBA

(A Multidirectional Optimal Ecotope-Based Algorithm) (Aldstadt and Getis 2006).

In brief, this algorithm starts with an initial area to which neighboring areas are

iteratively attached until the addition of any neighboring area fails to increase

the magnitude of the local G�i of Getis and Ord (1992) and Ord and Getis (1995).

The resulting region is considered an ecotope. This procedure is executed for all

areas, and final ecotopes are defined after resolving overlaps and asserting non-

randomness.

Most existing cluster identification techniques make the implicit assumption that

clusters are circular and compact regions. This assumption may be invalid. Spatial

clustering of mapped variables may result from a large set of related phenomena. The

natural environment, the built environment, and a complex set of human interactions

are responsible for the spatial aggregation of extreme values. There is no reason to

believe that the resulting spatial patterns should result in circular hotspots.

Assuming that clusters are circular may lead to incorrect cluster size and false-

positive determinations (Jacquez 2009). In simulation studies, the circular spatial

scan statistic tends to detect clusters that are larger than the true simulated cluster

(Tango and Takahashi 2005; Aldstadt and Getis 2006). Circular clusters of high

value also may include spatial units with below-average values. This situation arises

when peripheral low-value units are absorbed into a high-value cluster or worsen

when disjointed units with high values are captured at the edges of a single circular

cluster. In the latter case, a circular cluster of high values may be centered on a low-

valued unit. The AMOEBA does not permit the inclusion of low-value spatial units

in identified clusters of high values and vice versa.

The computational complexity of the AMOEBA implies that the time needed to

solve a problem will increase substantially as its size increases.2 Also,

computational experiments show that the combinatorial approach of this algorithm

1 A collection of statistical tests for cluster detection is available in a software package named

GeoSurveillance. See Yamada et al. (2009) for more information about this software.
2 In general, the problem of spatial clustering is related to a family of problems that are classified as N-P

hard (Wu et al. 2007; Gaudart et al. 2005). The combinatorial complexity of this type of problems has led

researchers to primarily focus on the development of algorithmic solutions.
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makes execution times highly sensitive to the size of the clusters. These two

characteristics make AMOEBA difficult, if not impossible, to apply to large

problems.

In this paper, we propose an alternative formulation for the AMOEBA that

significantly reduces its computational complexity without losing optimality. The

main characteristic of our approach is that we take advantage of some properties of

both the empirical distribution of the variable and the formulation of the G�i statistic

to guide the algorithm toward an optimal solution, avoiding the need for

combinatorial evaluations of the solution space, which are exceedingly costly from

a computational perspective. This new formulation makes possible the application

of AMOEBA to problem instances that involve very large numbers of areas.

The rest of the article is organized as follows: first, the original AMOEBA and its

supporting concepts are discussed. Next, the proposed variant is presented, and a

proof is provided that shows the equivalence of both algorithms. Afterward,

experimental results are presented that show performance comparisons between

both algorithms. Then, a brief empirical application based on data from Accra

(Ghana) is presented. The final section concludes.

2 Preliminaries

The G�i statistic measures the association between the values of an attribute at a

given area and its neighbors. In other words, it measures the level of clustering of an

attribute x around an area. For a given area i; G�i is defined as follows:

G�i ¼
PN

j¼1 wijxj � �x
PN

j¼1 wij

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN

j¼1
w2

ij �ð
PN

j¼1
wijÞ2

N�1

r ð1Þ

where elements wij are the spatial weights that reflect the proximity between areas

i and j, N is the number of areas, xj is the value of the attribute at area j; �x
represents the mean of the x values, and

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j¼1 x2
j

N
� �x2

s

:

Although the G�i statistic can be calculated using different representations of the

weights matrix (i.e., wij can be a binary variable or non-binary function, such as,

inverse distance), within the context of the AMOEBA the wij values are restricted to

be binary, with wij = 1 for those areas i and j included in the same ecotope.

The numerator of the statistic can be seen as the sum of the divergences with

respect to the mean of attribute x. This result occurs because, if we take only the xj

where wij = 1, we are left with

XN

j¼1

wijxj � �x
XN

j¼1

wij ¼
XN

j¼1

ðxj � �xÞ:
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The denominator is a strictly positive number that varies according to the number of

areas in the analyzed region.

G�i is asymptotically distributed as a normal N(0, 1). A positive (negative) and

statistically significant value of this statistic indicates the presence of a cluster of

high (low) values of attribute x around area i. Thus, Aldstadt and Getis’

AMOEBA identifies high-valued, or low-valued, ecotopes by looking for

subsets of geographically connected areas with a high absolute value of the

G�i statistic.

The algorithm starts by taking an area i and computing its G�i value. When

performed for a single unit, this amounts to calculating the standard score of the

value for unit i. A positive (negative) value of the statistic indicates that the value of

the attribute at area i is greater (lower) than the mean. Next, an exhaustive

evaluation is carried out by calculating the G�i statistic for each region that includes

the initial unit i and every possible combination of neighboring areas of area i. The

set that results in the maximum absolute G�i value with the same sign as the G�i value

for unit i alone is recorded. If this G�i value for unit i and a set of its neighbors is

greater than the G�i value for unit i alone; then, this set becomes the ecotope. The

procedure continues by examining each possible combination of areas contiguous to

the newly identified ecotope. This iterative process of identifying sets of

neighboring areas that maximize the value of G�i is repeated until it is not possible

to increase the absolute value of the G�i statistic by addition of a set of contiguous

units. The steps of growing an ecotope from an initial area are summarized in

Algorithm 1, which we call exhaustive AMOEBA.

After examining each area as the initial seed of an ecotope, the algorithm keeps

the non-overlapping ecotopes with the highest G�i values. For each remaining

ecotope, Aldstadt and Getis (2006) propose to perform a Monte Carlo-type

permutation test to calculate the statistical significance of each ecotope. This test

performs a large number of random spatial permutations for the attribute x and

records the times that the sum of the attribute values in the ecotope is larger than the

sum of the values in the original ecotope. The p-value for the ecotopes is then

calculated as the ratio between this number plus one and the total number of

permutations plus one. Those ecotopes with p-values below some predesignated

level of significance are considered as true clusters.

The problem with the original formulation of AMOEBA lies in the extensive

evaluation that must be realized to optimize G�i at each step. AMOEBA computes

the statistic for all combinations of non-excluded neighbors of the ecotope. Thus, if

a given ecotope has c neighbors, the number of iterations required to optimize the

statistic is

Xc

i¼1

c

i

� �
¼
Xc

i¼1

c!

i!ðc� iÞ! :

Needless to say, this number can become very large even for relatively small

numbers of neighbors. For example, an ecotope with 20 neighbors requires

1,048,575 iterations to fully explore the search space.
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Algorithm 1 Exhaustive AMOEBA

1: R = a0 // a0 is the seed area for this iteration

2: G�opt
i ¼ G�i ðRÞ // The function G�i calculates (1) for the given region

3: N = Neighbors (R) // Neighbors gives a list of all areas contiguous to R

4: T = [] // Begins an empty list of discarded areas

5: if G�opt
i � 0 then

6: do

7: G�aux
i ¼ G�opt

i

8: N = setDifference (N, T) // Removes all areas in T from N

9: C = Combination (N // Combinations gives a list of all possible combinations of all sizes of the
given list of areas

10: Copt = [] // Sets Copt to begin as an empty list

11: for i = 1 to length (C) do

12: if G�i ðR [ CðiÞÞ[ G�opt
i then

13: Copt = C(i)

14: G�opt
i ¼ G�i ðR [ CðiÞÞ

15: end if

16: end for

17: R ¼ R [ Copt

18: N = Neighbors (R)

19: while G�aux
i 6¼ G�opt

i

20: return R

21: else

22: do

23: G�aux
i ¼ G�opt

i

24: N = setDifference (N, T)

25: C = Combinations (N)

26: Copt = [] // Sets Copt to begin as an empty list

27: for i = 1 to length (C)

28: if G�i ðR [ CðiÞÞ\G�opt
i then

29: Copt = C(i)

30: G�opt
i ¼ G�i ðR [ CðiÞÞ

31: end if

32: end for

33: R ¼ R[Copt

34: N = Neighbors (R)

35: while G�aux
i 6¼ G�opt

i

36: return R

37: end if
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3 The improved algorithm

To introduce the improved method, let us revisit the formulation of the G�i statistic

as shown in (1). Note that a region or ecotope is essentially a geographically linked

group of areas. From this perspective, it is only natural to define a region as a

spatially contiguous set of areas. That being said, in the AMOEBA, the G�i statistic

is essentially a function that assigns real values to sets of spatially contiguous areas.

Suppose we run AMOEBA on a study region with N areas and an attribute x with

elements xi, indicating the value of x at area i. Let us denote this set of areas as M,

and �x and S as the mean and the standard deviation of the attribute x.

Now, let R be a subregion of M with n areas. As such, it is also a set of areas that

is contained in M. n corresponds to the cardinality of R, the number of elements in

it. In (1), n is exactly
PN

j¼1 wij. Also, because the term
PN

j¼1 wijxj adds only the data

from the areas that are in the region R, it can be equivalently expressed as
P

i2R xi.

It is clear as well that having wij constrained to take values of either 0 or 1, then

wij ¼ w2
ij and

PN
j¼1 w2

ij ¼
PN

j¼1 wij ¼ n. Because of this, ð
PN

j¼1 wijÞ2 ¼ n2.

With all this in mind, (1) can then be rewritten as follows:

G�R ¼
P

i2R xi � n�x

S
ffiffiffiffiffiffiffiffiffiffi
Nn�n2

N�1

q : ð2Þ

This notation implies that G�R is a function that goes from the power set of M to the

real numbers,3 and depends on the areas that are in the region R and the parameters

N; �x, and S that are obtained from the areas in M.

Suppose we are trying to maximize this statistic for a region with a positive value

of G�R. Intuitively, the areas that would contribute the most to its growth should be

those with the highest values above the mean, that is, an area with a higher attribute

value would contribute more to the statistic than one with a lower value.

The efficiency improvement presented in this paper results from the way the

statistic is maximized in each iteration. Instead of doing an exhaustive search of all

possible combinations of neighbors, we take a constructive approach where the

areas are sorted such that those that contribute most to the growth in absolute value

of the statistic come first; then, they are added one by one until no further

improvement is made upon the statistic. At that point, the resulting region

maximizes the statistic and the algorithm proceeds with the next iteration. We

coined this modified algorithm the constructive AMOEBA and it is presented in

Algorithm 2.

To guarantee that the results obtained from Algorithms 1 and 2 are equivalent, we

have to prove that the G�i statistic is indeed maximized by applying this process to it.

To prove the equivalence of constructive and exhaustive AMOEBA, the following

proposition is put forth:

Proposition Let H be a region such that G�H [ 0 with a set V of neighboring
areas. Let E be a set of neighbors such that G�H[E is maximal, and n* is the

3 The power set of a set M is the set of all subsets of M.
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cardinality of E. Then the union of H and the set of n* areas with the highest data
values in V generate exactly the same value of G�i .

This proposition states that when maximizing the G�i statistic for a region, it is

sufficient to take the first n* neighboring areas with the highest values. Although

this number is unknown, by sequentially adding areas to the cluster ordered by the

highest values, the problem is reduced to choosing the number of added neighbors

such that the statistic is maximized. The preceding proposition guarantees that this

Algorithm 2 Constructive AMOEBA

1: R = a0 // a0 is the seed area for this iteration

2: G�opt
i ¼ G�i ðRÞ // The function G�i calculates (1) for the given region

3: N = Neighbors (R) // Neighbors gives a list of all areas contiguous to R

4: T = [] // Begins an empty list of discarded areas

5: if G�opt
i � 0 then

6: do

7: G�aux
i ¼ G�opt

i

8: N = setDifference (N, T) // Removes all areas in T from N

9: Sort N according to area data in descending order

10: for i = 1 to length (N) do

11: if G�i ðR [ NðiÞÞ[ G�opt
i then

12: R ¼ R [ NðiÞ
13: G�opt

i ¼ G�i ðRÞ
14: end if

15: end for

16: N = Neighbors (R)

17: while G�aux
i 6¼ G�opt

i

18: return R

19: else

20: do

21: G�aux
i ¼ G�opt

i

22: N = setDifference (N, T) // Removes all areas in T from N

23: Sort N according to area data in ascending order

24: for i = 1 to length (N) do

25: if G�i ðR [ NðiÞÞ\G�opt
i then

26: R ¼ R [ NðiÞ
27: G�opt

i ¼ G�i ðRÞ
28: end if

29: end for

30: N = Neighbors (R)

31: while G�aux
i 6¼ G�opt

i

32: return R

33: end if
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is indeed the optimum. Analogously, when the intention is to minimize the statistic

for an area with a negative statistic, the areas with the lowest values are added and

the number of areas that yields the minimum statistic is chosen. Both the proposition

and the proof for this second case are analogous to the first.

Proof Let H be a region such that G�H� 0 and V the set of neighbors of H. Let 0 be

the amount of areas in V and P the power set of V, that is, the set of all subsets of

V. Every area in V has an assigned value.

Consider the order of the elements of V given by a1, a2,…, a0, where x1 C x2

C���C x0. xi is the value assigned to the area ai, i = 1, 2,…, 0. This can be

expressed as 8ai; aj 2 Vði \ j! xi� xjÞ.
Because the set fg 2 R : g ¼ G�H[Q;Q 2 Pg is a finite set of real numbers, it has

a maximum. Thus, there exists E [ P such that

G�H[E ¼ max
Q2P

G�H[Q:

In other words, 8Q 2 PðG�H[E�G�H[QÞ.
Let n* be the number of elements in E and C the set of the n* areas with the

highest associated values, that is, C ¼ fa1; a2; . . .; an�g
Reasoning to the absurd, suppose G�E[H 6¼ G�C[H . Then, E 6¼ C (because

H \ E ¼ H \ C ¼ ;). Then, there exist W;U with W ¼ fxn1
; xn2

; . . .; xnp
g � C and

U ¼ fxs1
; xs2

; . . .; xsp
g � V � C such that E ¼ ðC�WÞ [ U. This basically means

that C and E differ by a number of elements that are in these sets.

Now, because W � C and U \ C ¼ ;; n1; n2; . . .; np� n� and s1, s2, …, sp [ n*.

Because of this, for all 0 B i B p, it holds that ni B si and xni
� xsi

. Adding all these

inequalities, we have
X

xi2U
xi�

X

xi2W
xi: ð3Þ

Adding
P

xi2C�W xi þ
P

xi2H xi to each side of (3),
X

xi2U
xi þ

X

xi2C�W

xi þ
X

xi2H

xi�
X

xi2W
xi þ

X

xi2C�W

xi þ
X

xi2H

xi

Due to the construction of the sets, this is equivalent to
X

xi2E[H

xi�
X

xi2C[H

xi:

Subtracting n��x, and then dividing both sides of the inequality by S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nn��ðn�Þ2

N�1

q

, we

are left with
P

xi2E[H xi � n��x

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nn��ðn�Þ2

N�1

q �
P

xi2C[H xi � n��x

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nn��ðn�Þ2

N�1

q ;

which is equivalent to:

G�E[H �G�C[H :
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However, by hypothesis, we have that G�E[H 6¼ G�C[H . This restricts the last

expression to

G�E[H\G�C[H : ð4Þ

But C 2 P, and according to our hypothesis G�H[E�G�H[C, which contradicts (4).

We thus conclude that G�E[H ¼ G�C[H , that is, C also maximizes the G�i statistic. h

4 Computational experiments

4.1 The data

The data for the experiments consist of square grids of different sizes on which

spatial processes were automatically generated taking into account the following

requirements:

• The number of spatial clusters is predefined, and it is a even number such that

half of the clusters are clusters of high values, and the other half are clusters of

low values. Because the location of the clusters is defined at random, there are

cases in which groups of clusters collapse into a larger single cluster.

• The percentage of areas that are assigned to clusters is 20% of the total number

of areas on the grid. This areas are evenly distributed among the clusters.

• The shape of the clusters is controlled by a compactness factor (c.f.) that allow

us to create either compact or elongated clusters. This factor varies between 0

and 1, with 0 being the maximum level of elongation (forcing the areas in the

cluster to be arranged as a chain), and 1 being the maximum level of

compactness of the cluster.

• For all intents and purposes, the rook contiguity criterion defines the

neighborhood of each area.

• The values of the areas that belong to a cluster are extracted from the tails of

a standard normal distribution. The values for the remaining areas are

assigned by using the complete distribution. In the last case, because the

complete distribution is considered, it is possible to have additional clusters,

usually of small size, apart from the clusters that where deliberately

constructed.

It is worth noting that the distribution of the generated attribute do not conform to

a normal distribution. This is because of the previously discussed non-stationarities

present in the generated ecotopes.

A more detailed description of the steps to generate artificial clusters is presented

in Algorithm 3.4

Figure 1 shows two examples of instances of the problem. They consist of a

500 9 500 grid with a spatial process that contains six compact cluster, Fig. 1a, and

4 Other options to generate different spatial clustering patterns, like the spiral or linear clustering pattern,

can be found in Jackson et al. (2010).
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six elongated clusters, Fig. 1b. In the case of compact clusters, two cluster of low

value collapsed into a single cluster.

4.2 Software and hardware

In order to ensure a fair comparison, both exhaustive and constructive AMOEBA

were implemented in Python 2.6, including the Numerical Python (NumPy)

(a) (b)

Fig. 1 Examples of instances of the problem. a Compact clusters (c.f. = 0.9). b Elongated clusters
(c.f. = 0.55)

Algorithm 3 Procedure to generate spatial clustering patterns

Require: P = Number of clusters, c = Compactness factor (c [ [0, 1])

1: Generate a large amount of normally distributed (l = 0, r = 1) random numbers and store them in

the set D

2: Let Tl be the left tail of the generated numbers, and Tr the right tail

3: for i = 1 to P do

4: Calculate S, the size of the cluster, as S ¼ Round 0:2 � Total areas
P

� �

5: Calculate L, the ‘‘length’’ of the cluster, as L = Round ((1 - c) � S )

6: Select a seed area in the map that has not been assigned to a cluster. This area conforms a new

cluster

7: Until the cluster has L areas, randomly choose an unassigned area from the last added area’s

neighbors. Assign this area to the current cluster. This forms the ‘‘backbone’’ of the cluster

8: Iteratively choose an area from the neighbors of the cluster that has not yet been assigned to a

cluster, and append it to the cluster. Do this until the cluster has S areas

9: If creating a low-valued cluster, randomly assign values from Tl to each area in the cluster.

If creating a high-valued cluster, randomly assign values from Tr

10: end for

11: Randomly assign values from D to each area that is not in a cluster
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package.5 Python was also used to implement the data generation process and the

data and cluster visualization (with TkInter). The constructive version of AMOEBA

and the algorithm to generate artificial clusters are available in GeoGrouper, an open

source software written in Python that offers a selection of algorithms for region

design and spatial cluster identification. This software is developed in RiSE-group

(Research in Spatial Economics) at EAFIT University, and it is available from

http://geogrouper.appspot.com.6

Regarding the hardware, we executed the algorithm on a Dell Precision T3400

computer running the Windows XP-64bits operating system equipped with 8GB

RAM and a 2.99 GHz Intel Corel 2 Extreme Quad-Core processor. To optimize

computational resources, we dedicated one core and 2GB RAM to each instance of

the problem, which allowed us to solve four instances in parallel.

4.3 Experiment 1: Comparing the performance of exhaustive AMOEBA

and constructive AMOEBA

The first experiment is intended to compare the performance of Algorithms 1 and 2.

To do this, we generated grids of sizes ranging from 4 9 4 to 10 9 10, each one

with 100 realizations of clustered spatial processes. These 700 instances were solved

with both the exhaustive and constructive AMOEBA.

As expected, both algorithms identified the same clusters.7 The running times and

standard deviations are reported in Table 1.

The results show how the constructive AMOEBA provides a solution in a

considerably smaller amount of time than the exhaustive AMOEBA. This difference

grows larger as the size of the problem increases. The solution times for the

constructive AMOEBA also has a much lower variance than the observed with the

exhaustive AMOEBA.

In Fig. 2, we report the results for grids up to 20 9 20. In this case, we present

results only for constructive AMOEBA because the execution times of exhaustive

AMOEBA were too large to large to be analyzed. As the grids became larger, the

Table 1 Execution times of

AMOEBA (mean ± standard

deviation)

Grid size Exhaustive (s) Constructive (s)

4 9 4 0.12 ± 0.03 0.09 ± 0.03

5 9 5 0.31 ± 0.22 0.13 ± 0.03

6 9 6 1.63 ± 4.52 0.19 ± 0.04

7 9 7 6.47 ± 32.27 0.25 ± 0.05

8 9 8 31.7 ± 99.56 0.33 ± 0.06

9 9 9 131.97 ± 481.75 0.43 ± 0.07

10 9 10 1,800.44 ± 11053.35 0.57 ± 0.1

5 NumPy provides a wide variety of mathematical functions needed for scientific computing with Python

(Oliphant 2006).
6 The algorithm as a Python module is also available from the authors on request.
7 For each instance we generated 1,000 random permutations to perform the Monte Carlo-type

permutation test.
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execution times for constructive AMOEBA grew as well, but in no case did the

algorithm require more than 3.5 s to detect the ecotopes. The quadratic growth of

the execution times is due to the quadratic increase in the number of areas as the

sides of the grid augment.

4.4 Experiment 2: Shape and size of clusters and performance of constructive

AMOEBA

In this experiment, we explore the changes in running times due to changes in the

size and shape of the clusters. For this, we generated 100 instances of sizes

30 9 30, 50 9 50, and 100 9 100 with spatial processes containing 4, 6, and 8

elongated and compact clusters. In total, 1,800 instances were solved with

constructive AMOEBA. The results of these experiments are presented in Fig. 3a–c.

Each boxplot summarizes the running times obtained after solving 100 instances of

a given grid size, number of clusters, and compactness factor.

The first finding is that the larger the number of clusters, which implies clusters

of smaller size,8 the smaller the average and standard deviation of running times.

The size of the clusters affects the performance because for big clusters there is, at

each iteration, a larger number of neighboring areas that are candidates for joining

the cluster. In exhaustive AMOEBA, this phenomenon has a much larger impact on

running times because of its combinatorial approach.

There is a direct relationship between the cluster size and the standard deviation

of running times because when, during the data generation process, a group of

clusters collapses, the greater the size of the individual clusters collapsed, the

Fig. 2 Performance of constructive AMOEBA

8 This is because the percentage of areas that are assigned to be part of clusters is fixed, which implies

that a larger number of clusters results in smaller cluster size.
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greater the impact on running times. This relationships explains why the box plots

show in most cases a significantly longer tail toward larger values, which suggests

that the running times are positively skewed.

The results show that the shape of the cluster has a minimal impact on the

execution time. At each iteration, the optimization process is solely dependent on

the attribute value of the neighboring areas of the ecotope, so the time required to

obtain the solution is linear instead of factorial.

4.5 Experiment 3: Spatial distribution and performance of AMOEBA 2

Finally, in the third experiment, we measure how the running time of the

constructive algorithm is affected by the spatial distribution of the data. To approach

this question, we carried out the experiment presented in Algorithm 4.

The resulting distribution of the running times is presented in Fig. 4. The figure

shows an outlier of 22.81 s that corresponds to the time required for AMOEBA to

solve the unaltered generated map. The running times corresponding to the permuted

data are significantly lower, with a symmetrical distribution. The instances that

correspond to the highest and lowest execution times are shown in Fig. 5. Figure 5a, c

present the spatial distribution of the variables, and Fig. 5b, d show the true clusters

Fig. 3 Running times of constructive AMOEBA for different shapes and sizes of the clusters. a 30 9 30.
b 50 9 50. c 100 9 100
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(i.e., those clusters that are statistically significant when applying the Monte Carlo-

type permutation test). Clusters of high values are color coded with black, clusters of

low values are color coded with white, and the areas outside of cluster are color coded

with gray. It can be derived from this experiment that the execution times of

AMOEBA depend on the spatial distribution of the data in the grid.

5 Empirical application

The data used for this empirical application were provided by Professor John

Weeks, director of the International Population Center at San Diego State

University.9 The region of study is the Metropolitan Area of Accra divided into

1,717 Enumeration Areas, each of which was assigned a value corresponding to the

proportion of adults whose profession is administrative, clerical, or professional.

The map in Fig. 6 is color coded according to this variable: the darker the color of

Fig. 4 Execution times recorded from Algorithm 4

Algorithm 4 Spatial distribution experiment

1: Generate 50 9 50 grid with 3 high valued and 3 low valued-clusters

2: Execute constructive AMOEBA and store the execution time

3: for i = 1 to 200

4: Randomly distribute the data in the grid

5: Execute constructive AMOEBA and store the execution time

6: end for

9 http://geography.sdsu.edu/Research/Projects/IPC/ipc2research.html.
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the spatial unit, the higher the proportion of adults whose profession is

administrative, clerical, or professional in that particular area.

A study of this map using AMOEBA can give the researcher insight into the

socio-economic patterns present on the city. Employment in the selected sectors

requires higher levels of education than the omitted categories, which include sales,

service, mining, fishing, and agriculture. This variable, therefore, is a proxy for

social and human capital in an enumeration area.

The clusters obtained from AMOEBA are shown in Fig. 7. The resulting

ecotopes resemble closely the regions that are visually apparent in Fig. 6. Table 2

presents some summary statistics to provide a better understanding of the results

obtained from AMOEBA. The last column of the table provides those statistics for

the 1,717 Enumeration Areas in Accra.

Fig. 5 Grids corresponding to the highest and lowest times from Algorithm 4
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6 Conclusions

This paper presents an alternative formulation for the AMOEBA that drastically

reduces run times, while yielding exactly the same results as the original

formulation. This methodological improvement makes it possible to use AMOEBA

to solve larger problems.

Fig. 6 Map of Accra color coded according to the percentage of adults whose occupation is
administrative, clerical or professional

Fig. 7 AMOEBA clusters
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After we proved the equivalence of the original exhaustive AMOEBA and the

new constructive AMOEBA, we carried out different experiments to get a deeper

understanding of the performance of the new algorithm. Those experiments showed

that the spatial distribution of data affects running times; thus, the bigger the

ecotopes the larger the running time, and the larger the variance. Finally, an

empirical example using socio-economic data in Accra was presented, showing

AMOEBAS’ capability to identify irregular ecotopes.

Further research will be conducted in two directions. First, we will study the

applicability of this constructive approach to other spatial clustering statistics.

Second, we will formulate a new version of AMOEBA that can be applied to spatial

panel data.
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