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The creation of a spatial weights matrix by a procedure called AMOEBA, A Multidi-

rectional Optimum Ecotope-Based Algorithm, is dependent on the use of a local spa-

tial autocorrelation statistic. The result is (1) a vector that identifies those spatial units

that are related and unrelated to contiguous spatial units and (2) a matrix of weights

whose values are a function of the relationship of the ith spatial unit with all other

nearby spatial units for which there is a spatial association. In addition, the AMOEBA

procedure aids in the demarcation of clusters, called ecotopes, of related spatial units.

Experimentation reveals that AMOEBA is an effective tool for the identification of

clusters. A comparison with a scan statistic procedure (SaTScan) gives evidence of the

value of AMOEBA. Total fertility rates in enumeration districts in Amman, Jordan, are

used to show a real-world example of the use of AMOEBA for the construction of a

spatial weights matrix and for the identification of clusters. Again, comparisons reveal

the effectiveness of the AMOEBA procedure.

Introduction

In recent years, two problems have been especially troublesome for spatial ana-

lysts: (1) the difficulty in creating a defensible spatial weights matrix for use in

spatial autoregressive (SAR) models (the context for the problem is outlined in

Anselin 1988) and (2) finding spatial clusters on a map, that is, identifying ‘‘geo-

graphically bounded group[s] of occurrences of sufficient size and concentration to

be unlikely to have occurred by chance’’ (Knox 1989). In an edited volume on this

subject (Alexander and Boyle 1996), the many sides to this problem are discussed.

In this article, we introduce a methodology that addresses these problems simul-

taneously and gives results that appear to be an improvement over current tech-

niques used for their solutions.
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Our method is in the form of an algorithm, A Multidirectional Optimal Eco-

tope-Based Algorithm (AMOEBA), which is a design for the construction of a spatial

weights matrix using empirical data that can also simultaneously identify the ge-

ometric form of spatial clusters. It is multidirectional in that it searches for spatial

association in all specified directions from one or more ‘‘seed’’ spatial units. It is

optimum in the sense that the scale is the finest (most local) at revealing all of the

spatial association that is subsumed in the data. We use the term ecotope-based to

represent the technique’s emphasis on finding subregions of spatial association

within the entire spatial data set. In the environmental literature, a specialized re-

gion within a larger region is termed a habitat or ecotope. In effect, we introduce an

algorithm for finding ecotopes that are spatial clusters of association among data

points. Very often, these ecotopes are spatially irregular, or amoeba-like. The

algorithm shares some common features with region-growing techniques from the

image segmentation literature (Adams and Bischof 1994). The usual goal of

these algorithms is to partition a large number of pixels exhaustively into homo-

geneous regions from a much smaller number of seed pixels. The emphasis here is

on statistically significant clusters of high and low values and is not necessarily

exhaustive.

AMOEBA is based on a principle developed earlier (Getis and Aldstadt 2004)

that spatial structure can be considered in a two-part framework that separates spa-

tially associated data from nonspatially associated data. Fundamental to AMOEBA

is a single type of local statistic that is used to test the existence of a spatial asso-

ciation between nearby spatial units. In this article, for demonstration purposes, we

use the local G statistic ðGi
�Þ of Getis and Ord (1992) and Ord and Getis (1995). The

subscript i implies that the statistic’s focus is on a particular spatial unit. We dem-

onstrate AMEOBA’s usefulness by a comparison with a procedure based on the scan

statistic called SaTScan. The evaluation uses georeferenced total fertility rate data

from Amman, Jordan.

The literature on the creation of spatial weights matrices (W) is extensive. Getis

and Aldstadt (2004) identify over a dozen different types of W. The simplest are

contiguity-type matrices, while among the most complex are those based on geo-

statistical models. In between these extremes are a host of different distance-related

formulations. The point to be made, however, is that the need for a W in research is

based on the notion that any spatial model must account for the spatial association

extant within any region that has been divided into its constituent parts.

Those developing spatial models have as their viewpoint of W one of the

following three types of representations:

1. A theoretical notion of spatial association, such as a distance decline function.

2. A geometric indicator of spatial nearness, such as a representation of contig-

uous spatial units.

3. Some descriptive expression of the spatial association within a set of data,

such as an empirical variogram function.
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For viewpoint 1, modelers argue that a spatial weight matrix is exogenous to

any system and should be based on a preconceived matrix structure. A typical

theoretical formulation for W is based on a strict distance decline function such as

1/d 2
ij where i and j are the centroids of spatial units. As little theory is available for

the creation of these matrices, many researchers follow viewpoint 2, that is, they

resort to geometric W specifications, such as a contiguity matrix (1’s for contiguous

neighbors and 0’s for noncontiguous neighbors), reasoning that it is the nearest

neighboring spatial units that bear most heavily on each other and thus represent

the spatial association in a given set of georeferenced data. They argue that, with

respect to an absence of theory, a simple near-neighbor approach appears to be

reasonable (see, especially, Bartels 1979). For viewpoint 3, modelers allow study

data to speak for themselves, that is, they extract from the already existing data

whatever spatial relationships appear to be the case and then create a W matrix

from the observed spatial associations. As a result, models based on this type of

endogenous specification have limited explanatory power, the limit being the

reference region. AMOEBA is based on viewpoint 3.

The rationale for AMOEBA is simply that, as viewpoints 1 and 2 may not rep-

resent the reality that is embodied in their study data, researchers are better advised

to adopt viewpoint 3 by creating W from their already existing data. At the very

least, they can argue that the complexities of spatial association within their data

will be included in any SAR model. In a sense, we have differentiated strictly ex-

planatory models of viewpoints 1 and 2 from the descriptive models of viewpoint 3.

Note that the entire field of geostatistics, a field that emphasizes forecasting, is

based on viewpoint 3 (Cressie 1993).

In the following section, we outline the way AMOEBA produces a W matrix.

This leads to representations for spatially and nonspatially associated observations

in addition to the W matrix. Next, we demonstrate the use of AMOEBA in a

SAR model environment using data from Amman, Jordan. Then, by means of

an example using artificial data, we show how AMOEBA can act as a spatial

cluster identifier. We then compare our methodology with the spatial cluster iden-

tification technique SaTScan (Kulldorff 1997). Finally, closing comments are

offered.

Creating W with AMOEBA

AMOEBA is an algorithm for creating a spatial weights matrix from univariate, areal

spatial data. In our explanation of AMOEBA we use the Getis–Ord local statistic Gi
�

(Ord and Getis 1995). For a given location i, the statistic Gi
� is defined as

G�i ¼
PN

j¼1 wijxj � �x
PN

j¼1 wij

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN

j¼1
w2

ij
�
PN

j¼1
wij

� �2
�

N�1

vuut � ð1Þ
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where N is the number of spatial units, xj is the value of the phenomenon of interest

at location j, x� is the mean of all the values, and

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 x2

j

N
� ð�xÞ2

s

wij is an indicator function that is one if unit j is in the same designated region as

unit i and zero otherwise.

The null hypothesis for a test based on this statistic is that there is no association

between the value found at a site and its neighbors within the designated region.

The expected value under the null hypothesis is 0, and the variance is approxi-

mately 1. Therefore, the Gi
� statistic is distributed as a standard normal variate. It

should be noted that, with minor procedural modifications, other local statistics

such as Anselin’s local Moran’s Ii (Anselin 1994) or the spatial scan statistic

(Kulldorff 1997) can be used in the AMOEBA procedure. Point data, however,

can be used only if the points are aggregated into areal spatial units.

At the outset of the AMOEBA procedure, we compute the Gi
� value for the

spatial unit i itself. This value is denoted Gi
�ð0Þ and the ecotope consists of just the

ith unit. A Gi
�ð0Þ value greater than zero indicates that the value at location i is

larger than the mean of all units and, correspondingly, a value less than zero in-

dicates that the value at location i is smaller than the mean.

The next step is to compute the Gi
�ð1Þ value for each region that contains i and

all combinations of its contiguous neighbors (see Fig. 1). For an ecotope with four

4
contiguous neighbors,

� �
4

þ
� �

4
þ
� �

þ
� �

4
¼ 15 different regions are

4 3 2 1

evaluated. If Gi
�ð0Þ is greater or less than zero, the combination that maximizes

the statistic Gi
� 1 absolutely becomes a new high- or low-value ecotope. At eachð Þ

1

1 10

1

Figure 1. Stage one in AMOEBA determination: the bold arrows represent those links to units

that are to be included in the ecotope. The light arrow indicates a link to a contiguous

neighbor that will not be included in the ecotope.
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succeeding step, contiguous units that are not included in the ecotope are elim-

inated from further consideration. Likewise, units included in the ecotope remain in

the ecotope. Subsequent steps evaluate all combinations of contiguous neighbors

and new members of the ecotope are identified. This process continues for k

number of links, k 5 2, 3, 4, . . . , max (see Fig. 2). The final ecotope (kmax) is iden-

tified when the addition of any set of contiguous units fails to increase the absolute

value of the Gi
� statistic. Fig. 3 shows a complete AMOEBA ecotope in a raster

setting. The maximum number of links in this case is five (kmax 5 5).

The results of the AMOEBA procedure are then used to construct W by using

equation (2). All rows of W are row standardized, that is, each row is equated

proportionally to sum to 1. This implies that the elements of W are relative within

rows and not between rows. By convention, the diagonal elements (wii) are set to

zero. The weight calculation for entry into the ith row of W is given by

When kmax > 1

wij ¼ fP ½z � G�i ðkmaxÞ� � P ½z � G�i ðkjÞ�g=
fP ½z � G�i ðkmaxÞ � P ½z � G�i ð0Þ�g; for all j where 0 < kj � kmax;

wij ¼ 0; otherwise;

when kmax ¼ 1

wij ¼ 1; for all j where kj ¼ 1;

wij ¼ 0; otherwise;

when kmax ¼ 0

wij ¼ 0; for all j:

ð2Þ

Read kj as the number of links connecting i and j in the ecotope. The prob-

abilities in equation (2) are the cumulative probability associated with the Gi
� value.

Thus, the numerator in equation (2) represents the area under the standard normal

0 1

1

1

1

2

2

2

2

2

2

2

Figure 2. Stage two in AMOEBA determination: the bold numbers represent those cells that

are to be included in the ecotope at stage 2.
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Figure 3. Completed AMOEBA pattern: the dark boundary outlines the final shape of the

ecotope.

curve between Gi
�ðkmaxÞ and Gi

�ðkjÞ. The values of wij, therefore, decrease as the

number of links between units i and j increase.

When the ecotope contains only units one link away from the ith unit

(kmax 5 1), each of these units is given a weight of 1. In this special case, there is

no need for relative weighting of wij values.

When there is no spatial association between i and any j (kmax 5 0), the ith row of

W is completely filled with zeroes. We differentiate between the ‘‘all zero’’ rows and

those with any cell having a value greater than wij 5 0. We create an n � 1 vector of

ones and zeroes where ones represent the zero rows and zeroes represent the re-

maining rows. Thus, the vector (U) acts as a dummy variable representing those ob-

servations having no spatial association with any other observation (see Fig. 4). We

point out in Getis and Aldstadt (2004) that, under most circumstances, that is, when

the number of zero rows in W is less than half of all rows, the nonsingularity re-

quirement of the W matrix in a SAR equation is satisfied.

In sum, then, for each observation i, the set of j observations that maximizes the

local statistic becomes a member of the ecotope together with the ith observation.

The procedure ends when any combination of linked observations fails to increase

the Gi
� value. We then enter all wij values into an n � n spatial weights matrix (W),

where n represents the total number of observations. The distinguishing feature of

this approach is its flexibility in identifying the spatial association of nearby units

regardless of the configuration of those units.

We may generalize the AMOEBA approach in the following way1:

First partition Y, the vector data values, into {Yc, Y0} where subscript c denotes

units that have an association with at least one other spatial unit, and 0 denotes spatial

units with no such association. A spatial autoregressive model may be written as

Y c

Y 0

� �
¼ a

1c

10

� �
þ r

Wcc Wc0

0 0

� �
Y c

Y 0

� �
þ b

0

10

� �
þ

ec

e0

� �
ð3Þ
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Figure 4. Matrices U and W: note that when the ith row is 1 in U, all cells in the ith row are

0 in W. The AMOEBA procedure determines the wij.

where the various matrices and vectors are partitioned conformably. Wcc is the matrix

of spatial association, and Wc0 is the matrix of spatial association between units as-

sociated with at least one other unit and units having no spatial association with any

other unit. The r is a regression coefficient that represents the strength of the spatial

association in the study area taken as a whole. Each of the two e vectors represents

normally distributed residuals. This allows a different intercept (a1b) for the ‘‘0’’

terms, against a for the ‘‘c’’ terms. Extensions to the model might include additional

such terms to allow for more complex spatial structures.

If we write the likelihood for this model, we find that the estimator for (a1b) is

just
P

Y 0=n0 where n0 is the number of ‘‘0’’ cells. The rest of the likelihood func-

tion reduces to the form for Yc with Y0 as an ‘‘explanatory’’ variable. In Anselin’s

typology (1988), equation (3) may be considered a spatial lag autoregressive model.

AMOEBA, W, and total fertility levels in Amman, Jordan

As an example of the use of AMOEBA in its W context, we used a data set con-

taining total fertility rates and many other social variables for enumeration districts

(n 5 93) in Amman, Jordan. See Weeks et al. (2004) for a complete description of

this data set. Our goal is to:

1. estimate the parameters of a SAR model using an AMOEBA-generated spatial

weights matrix and

2. compare the model in which AMOEBA is used with a misspecified ordinary

least squares (OLS) model. The misspecification for OLS is due to the spatial

autocorrelation contained within the data. In addition, we compare the

AMOEBA SAR model with a model based on a row-standardized contiguity

matrix for W.
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Table 1 Parameter Estimates of Multiple Regression Models of Fertility Rates in Amman

OLS Contiguity AMOEBA

b t b t b t

Constant 4.42 6.27 4.54 6.50 1.74 3.55

Female education � 0.14 � 14.34 � 0.14 � 13.05 � 0.11 � 11.55

Marital status 0.01 1.26 0.01 1.16 0.01 1.98

W coefficient (l) 0.29 1.63 0.97 98.79

Nonspatial/spatial (a) 1.29 12.59

AIC 165.35 160.625 79.159

AIC, Akaike information criterion; AMOEBA, A Multidirectional Optimum Ecotope-Based

Algorithm; OLS, ordinary least squares.

For the AMOEBA SAR model, we use a spatial error formulation in which the

W matrix is determined by the pattern of total fertility rates (TFR) values and row

standardized. The model is of the form

Y ¼ aU þ Xbþ ðI � lWÞ�1e ð4Þ

where U is the vector representing the nonspatially associated data units (desig-

nated as 1) and the spatially associated units (indicated by 0). The X is the matrix of

independent variables—percentage of females with higher education, percentage

of females who are married—and Y is the dependent variable, TFR. The (I� lW)�1

matrix represents that portion of the residuals explained by the spatial autocorre-

lation subsumed in W, and e is the remaining vector of uncorrelated residuals. The

parameters, a, b, and l, to be estimated, indicate the strength of the variables. The

software package SpaceStat (Anselin 1992) was used for this operation. Table 1

compares this model with the OLS and contiguity models. We use the Akaike

information criterion (AIC) to aid in the evaluation of the three models.

The key findings are that the AMOEBA model: (1) identifies the importance of

the independent variables and shows the extreme relevance of both the spatial (W)

and the spatial/nonspatial (U) components of the model, (2) points out the weakness

of both the OLS and contiguity formulations (AIC values are double that of the

AMOEBA model—low AIC values represent good fitting models), and (3) indicates

that the contiguity model fails to identify spatial autocorrelation as relevant

(t 5 1.63) to the model.

AMOEBA as a cluster identifier

For demonstration purposes, we create a spatial data map containing six obvious

clusters of varying size: three clusters of high values and three clusters of low values

(see Fig. 5). This illustration is designed to show how AMOEBA identifies arbitrarily

shaped spatial clusters. The data set is made up of 900 observations in a 30 � 30

raster setup. The values constituting the observations were extracted from a normal
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Figure 5. Artificial data set with six clusters: three with high values and three with low

values.
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distribution with mean 0 and variance equal to 1. Clusters are made up of values

taken from the tails of the distribution. Those pixels not assigned to clusters were

assigned values as random draws from the same normal distribution.

We present five examples of AMOEBA as a cluster identifier (see Fig. 6). Five

pixels within the six-cluster data set are selected. These are as follows:

(a) the center of what clearly represents a cluster of high values;

(b) the inside edge of the same cluster;

(c) the edge of a small, irregularly shaped positive cluster within which is one

pixel with a much lower value than the others;

(d) the center of a narrow, irregular cluster; and

(e) a low-value pixel surrounded by higher value pixels.

Note that Fig. 6a and b indicate that, within a cluster, no matter where the pixel

location, center, or edge, the AMOEBA procedure delimits the same cluster. In

addition, the cluster that is identified follows the visual outline of the constructed

cluster. AMOEBA identifies the exact same pixels that we used to create the arti-

ficial cluster. The procedure does, however, include a few extra pixels (10 of them)

not contained within the original artificial cluster of 113 pixels. This is due to the

fact that, in the construction of the test map, a few pixels not earmarked for the

artificial clusters, but having high values nonetheless, were randomly assigned to



Figure 6. Five seed locations and ecotopes generated by AMOEBA. (a) A seed location near

the center of a large cluster. (b) A seed close to the edge of a large cluster. (c) A seed within a

small perforated cluster. (d) A seed that generates a linear ecotope. (e) A cell with a low value

surrounded by high values is used as a seed.

be at the edge but outside of the artificial cluster. One cannot argue that these were

mistakenly confused for the cluster as they are statistically significantly associated

with nearby pixels.

In Fig. 6c, observe that AMOEBA, as expected, fails to create a cluster around

the pixel with a purposely created low value. Fig. 6d emphasizes that, in their

spatial complexity, the procedure easily identifies irregularly shaped clusters. Fi-

nally, in Fig. 6e, a pixel that does not conform to those around it (no spatial au-

tocorrelation) shows up as an isolated pixel that is to be relegated to the U vector in

the two-part spatial weights matrix.

In most cases, AMOEBA is able to start at any location within a cluster and go

on to define the cluster, even if irregularly shaped. In the computer routine for

finding clusters, we create an ecotope for each site. The ecotope with the highest

Gi
�ðkmaxÞ is selected as a cluster. Any ecotope overlapping with this ‘‘highest’’

cluster is removed from consideration. Then, the remaining ecotope with the next

highest Gi
�ðkmaxÞ value is selected. This process continues until no further ecotopes

are identified.
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The exact probability that each ecotope has arisen by chance is then evaluated

using a Monte Carlo-type permutation test. A large number of random permutations

of the data set are generated. These permutations involve randomly placing the N

observed values among the N spatial units. For each of these permutations, the Gi
�

statistic is calculated for the ecotope. The P value is then calculated as the rank of

the observed data set divided by the number of Monte Carlo realizations plus one.

Only those ecotopes with P values below some predesignated level of significance

are considered as true clusters.

AMOEBA compared with SaTScan

One of the most popular and statistically sound cluster identifiers is based on the

spatial scan statistic (Kulldorff 1997). A well-known software package, SaTScan,

makes it easy to apply the procedure to both raster and vector data (Kulldorff et al.

1998; Kulldorff 2005). The following is a brief sketch of the nature of the spatial

scan statistic and of SaTScan.

The spatial scan statistic is designed to find a spatial cluster that is unlikely to

have occurred by chance. The likelihood can be based on any of a number of

probability distributions. For aggregate spatial and spatiotemporal data, the Poisson

distribution is used. The null hypothesis is that the count in each spatial unit is

proportional to its population size. The likelihood ratio test statistic is

LRðRÞ ¼ cR

mR

� �cR C � cR

C � mR

� �C�cR

ð5Þ

where C is the total number of cases for the population, cR is the number of cases in

region R, and mR is the expected number of cases in region R. The most likely

clusters are determined based on this maximum likelihood ratio statistic. An exact

P value is calculated using a Monte Carlo procedure that involves generating a

large number of realizations under the null hypothesis.

The SaTScan procedure uses a circular window (or kernel) on a map of the

study region and allows the circle to move over it. The radius of the window con-

tinuously changes between zero and a specified upper limit. Each of the circles is

considered to be a potential cluster. For each circle, one calculates the likelihood

that one would find the observed sum of the values within the circle in consider-

ation of the sum of values outside of the circle. Of all of the circles tried (a very large

number), the one with the maximum likelihood is defined as the cluster that is the

least likely to have occurred by chance.

In the following comparison with AMOEBA, we use an artificial data set more

evocative of differences in cluster shape than that used in the earlier AMOEBA

examples. We generated a 30 � 30 pixel image (900 pixels) with four clusters: two

of high values and two of low values (see Fig. 7). These values were taken from the

tails of a normal distribution (mean 100, standard deviation 25). The noncluster

values were taken from a normal distribution with mean 100, but standard devi-
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Figure 7. Four clusters with values for cells given in the legend.

ation 5 so that distinct clusters would obtain. We purposely selected ‘‘difficult’’

shapes for the clusters. One cluster shape is that of Norway (elongated). The second

is that of Zimbabwe (compact). The next is Thailand (prorupt) and the fourth is

South Africa (perforated by the country of Lesotho) (see Getis, Getis, and Fellmann

2006, p. 305, for further information on shape). We also purposely selected very

obvious and distinct clusters. This is to ensure that the comparison is limited to the

cluster search algorithms and not a comparison of the power of the two clustering

statistics (Gi
� and spatial scan).

Utilizing the spatial scan statistic, the SaTScan software is designed to detect

spatial or space-time clusters (a cluster of events that are grouped in space and time

simultaneously) and to identify those that are statistically significant. ‘‘A cluster

detection test is able to both detect the location of clusters and evaluate their sta-

tistical significance without problems of multiple testing’’ (Kulldorff 2005, p. 11).

The options we chose for SaTScan were based on the nature of our data (cross-

sectional areal data): purely spatial retrospective analysis, the Poisson probability

model; the types of clusters sought (areas of high and low values); the Poisson

model need for a base population (each pixel was set to 1000); and importance of

clusters sought (secondary clusters were not reported if they overlapped a more

statistically significant cluster). Fig. 8 shows the results of the SaTScan trial, and

Fig. 9 identifies the misclassified pixels. Of the 900 pixels, 180 were misclassified.

Of the 255 pixels in the artificially generated image that were contained in clusters,

SaTScan properly identified 218, or 85%, but classified 143 of the 645 noncluster

pixels as part of the clusters (22%). Overall, SaTScan’s accuracy was 80%. The
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Figure 8. SaTScan clusters: one high-value and four low-value clusters. Compare with Fig. 7.

most likely reason for the high number of missed pixels is the circular shape of the

SaTScan procedure. That is, it is basically constructed to find only compact clusters.

Thus, in the case of the Zimbabwe shape, only four pixels in the cluster were

misclassified.

Figure 9. SaTScan: correctly and incorrectly classified pixels.
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Figure 10. AMOEBA clusters: note the perfect correspondence with clusters shown in Fig. 7.

Further experimentation with SaTScan produced larger errors. For example, by

choosing the option, ‘‘no cluster centers in other clusters,’’ the number of correct

predictions was 66%, and when we chose ‘‘no cluster centers in less likely clus-

ters,’’ the percentage correct was 70%. Using these less restrictive criteria resulted

in more correct classifications of the pixels within clusters, but resulted in many

more misclassifications of pixels outside of the clusters.

In contrast, Fig. 10 shows the results for AMOEBA using the Gi
� local statistic.

There were no misclassified pixels; that is, AMOEBA was able to recreate the

artificial clusters exactly.

For our second example, we show the TFR of Amman (Fig. 11a), the results of

the AMOEBA cluster routine (Fig. 11b), and a comparison with the SaTScan clusters

(‘‘no geographical overlap’’ option used, Fig. 11c). AMOEBA identifies an irregular

cluster of high TFR rates in the east and southeast part of the city containing 33 EDs.

In addition, there are two small clusters of high values. The low cluster is extremely

irregular starting from the northwest and stretching into the center of the city (the

well-to-do areas of the city). Note that 16 enumeration districts are not members of

a cluster. In contrast, SaTScan again, because of its ‘‘circular’’ nature, finds com-

pact clusters that do not always correspond to those identified by AMOEBA. Of the

33 high-value EDs found as the main cluster by AMOEBA, SaTScan missed 12 EDs

and added two EDs that were not included in AMOEBA’s determination.

In order to better understand any variability in clusters identified by AMOEBA,

we considered seeds other than the one required, that is, ecotopes not with the

highest Gi
�ðkmaxÞ value. For the largest cluster in Amman, 25 of the 33 EDs as seeds
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produced the cluster seen in Fig. 11b with small variations (one produced a one

spatial unit larger cluster and 24 produced a three-unit smaller cluster). The re-

maining eight seeds produced clusters of size one or two, a result that is obtained

when extreme values result in high Gi
� values that are considerably higher than

their near neighbors.

Figure 11. Census districts of Amman, Jordan. (a) Total fertility rates in 1994. (b) Clusters

identified by AMOEBA. (c) Clusters identified by SaTScan.
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Summary and conclusions

As a device for determining the values in a spatial weights matrix, we have shown

convincingly, although not unequivocally, that AMOEBA is a good tool for recog-

nizing the manifestation of spatial association among nearby units. Significant im-

provement in model fit can be achieved by incorporating a weights matrix that is

representative of the observed spatial association in the data. Using a vector that

differentiates nonspatial from spatially associated units is a decided advantage

when coming to grips with the complexity of interaction and noninteraction among

spatial units.

In addition, AMOEBA is an effective device for finding clusters of weighted

spatial units, even when the clusters are irregular in shape. Moreover, one need not

use the same spatial unit to identify a cluster, but one must be prepared to see

relatively small variations in the cluster size and shape depending on the seed

location (this holds true under most circumstances).

In general, the AMOEBA and SaTScan routines differ mainly by their search

algorithm. The circular nature of SaTScan tends to be inclusive of low-valued units

in clusters of high values more so than AMOEBA. The rule that AMOEBA employs

that possible overlapping clusters yield to the highest valued cluster implies that

AMOEBA is the less inclusive. The rationale for this rule is that a statistically un-

important location would have to be included in a secondary overlapping cluster.

Further, as AMOEBA’s approach is a systematic step-by-step sequence in any di-

rection, any low-valued location is quickly identified and eliminated from a pos-

sible cluster. In SaTScan’s approach, it is the group of data sites within the circle

that are evaluated together. This tends to generalize the cluster to include more low

sites than in AMOEBA.

When compared with the SaTScan clustering routine, AMOEBA performs well.

Apparently, algorithms that depend on particular shapes, such as circles or ellipses,

are less successful at ferreting out the nuances of cluster configuration. In any

case, it should be clear that SaTScan has much in common with AMOEBA; chief

among the commonalities is the search for highly significant measures of spatial

association.

Acknowledgements

We would like to express our appreciation for the funding that we received from the

National Institutes of Health (AI034533) and the National Science Foundation

(BCS-0095641 and BCS-0502020). We especially thank Keith Ord, Thomas Scott,

John Weeks, and the anonymous referees for their support and comments.

Note

1 This formulation was suggested to us by J. Keith Ord, Georgetown University.
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