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1. INTRODUCTION  

Cartographers have become increasingly interested in an area of scientific investigation known as geocomputation (1, 
2). Most of this cartographic involvement has focused on geographic visualization (3), drawing on centuries of 
accumulated cartographic expertise, combined with lessons learned from a diverse group of other fields, including 
cognitive science and computer science. What most of these activities have in common is the goal of 
discovering/conveying knowledge contained in increasingly large geographic data repositories. 
On the other hand, there are cartographic activities aimed at the metaphorical transfer of cartographic principles and 
methods to non-geographic domains. This is on one hand driven by the desire to utilize the spatio-cognitive abilities of 
humans towards data mining and knowledge discovery in non-spatial databases. On the other hand, a cartographic 
interpretation of novel computational techniques may help to inform and critically engage those who hope to employ 
these methods in non-geographic visualization. This is what this paper attempts, with a view of the self-organizing map 
method. It engages the distortions caused by this popular artificial neural network approach in two ways. First, the paper 
presents a cartographically informed method to visualize these distortions. Second, it examines whether distortion 
characteristics could be exploited towards a novel type of map projection. 

2. THE SELF-ORGANIZING MAP 

Among the computational techniques employed in data mining and knowledge discovery, the self-organizing map 
(SOM) is arguably the one most obviously inviting cartographic reflection. Note that the method is unrelated to the 
Space Oblique Mercator projection (4), which goes by the same acronym. While there is no stringent reason to train a 
SOM in only two dimensions, this is by far the most common case. Consequently, use of the SOM method typically 
leads to two-dimensional visualizations and this is where cartographic expertise is of course most directly applicable. 
The SOM method is an unsupervised, artificial neural network (ANN) technique. While it should not be mistaken as 
imitating or simulating actual brain activity, it is certainly the ANN approach most closely inspired by brain physiology 
and theorized cognitive processes (5). This is particularly apparent in its recognition of the relevance of spatial order in 
relating bits of information. 
SOMs take a set of high-dimensional vectors as input. The SOM itself has traditionally been a two-dimensional 
arrangement of neurons or nodes that form either square or hexagonal neighborhoods, so that each neuron will have 
either four or six neighbors connected to it. Each neuron is associated with a vector of the same length as the input 
vectors. 
During training, the method makes iterative adjustments to the values of each neuron’s vector. Over the course of many 
training runs, high-dimensional structures inherent in the training data eventually become replicated in the two-
dimensional grid of high-dimensional neuron vectors. At that point, the trained neuron grid can serve as a surrogate of 
the original, high-dimensional vector space, much like a two-dimensional cartographic map serves as a surrogate of the 
earth’s curved two-dimensional surface. It is this inherent affinity of the SOM method to cartographic approaches that is 
at the heart of this paper. 
Cartographers are well aware of the distortions involved in map projections and consider distortion patterns when 
choosing a particular projection. There also is now a significant body of cartographic work addressing the visualization 
of projection distortions (6). Distortions caused by SOM training are much less understood. Given the non-linear nature 
of SOM training, this is not surprising, since SOM distortions are less predictable and regular than those encountered 
with cartographic projections. What is surprising is the relative scarcity of methods to specifically visualize distortions 
introduced during SOM training. One notable exception is the unified matrix (U-matrix) method (7). It is based on a 
computation of the degree to which neighboring neurons in the fixed neuron grid are different from each other. 
Interestingly, the U-matrix method is billed as a clustering technique by its proponents and accessible as such in popular 
SOM software, like Eudaptics’ Viscovery SOMine (www.eudaptics.com). This interchangeable nature of “clustering” 



and “distortion” inherent in a trained SOM points to the fact that SOM training leads to an expanded representation of 
some feature space portions and a contraction of others.  
Recent studies appear to confirm that users of map-like, non-geographic information visualizations interpret distances 
in point configurations in a fairly linear manner (8). In other words, users assume map distances to be accurate depiction 
of high-dimensional feature relationships. If this is not justified, as in the case of the SOM method, we must first gain a 
further understanding of causes and typical patterns of distortions, before proceeding to develop methods for either 
counteract them by computational and visual means or at least communicating cautionary messages to end users.  

3. A SOM-BASED MAP PROJECTION METHOD 

The most fundamental goal when using the SOM method is to uncover structures and relationships in high-dimensional 
data sets. When used in visualization, the method is mostly valued for dimensionality-reduction, as an alternative to 
such earlier techniques as multidimensional scaling (MDS) or projection pursuit. As far as distortions are concerned, 
large dimensional jumps are naturally a prime concern. For example, when mapping out text document vectors in two 
dimensions, one attempts to bridge a discrepancy of several hundred dimensions (9). However, a preoccupation with 
dimensionality clouds the role that the projection method itself may play in causing distortions. In order to isolate that 
role, it is here proposed to test distortion patterns using low-dimensional data as input to SOM training. Specifically, 
point data covering much of the globe given in latitude and longitude form are taken as input and the resulting SOM is 
then used to visualize a number of geographic layers.  

3.1. Source Data 
A data set consisting of regularly sampled point location formed the basis of SOM training. In order to reduce initial 
projection bias, the regular grid of points was created from an equal-area projection. The Eckert IV projection was used 
here (Figure 1), due to its combination of complete global coverage with a less extreme stretching of polar areas, when 
compared to other global equal-area projections. Ideally, a global equal-area tessellation should be used (10), in order to 
further eliminate latitudinal bias. In this study, a commercial off-the-shelf GIS (ESRI ArcGIS) was used, in which such 
functionality was not yet available. 
The training data were further processed in anticipation of certain distortion effects. SOM training does not aim to 
preserve distance relationships of input features. Instead, it attempts to preserve high-dimensional, topological 
relationships as adjustments to the neuron vectors are made. Consequently, one would expect that the absence of 
features in certain portions of the input space would lead to a contracted representation of those empty portions. To test 
 

 
Figure 1.  Points for the training data set were sampled from an equal-area projection (Eckert IV) and output as 

geographical coordinates. 



this assumption, sample points inside oceans and other major water bodies were eliminated (Figure 1). The resulting 
training data set consisted of 14489 points.  

3.2. Neural Network Training 
In order to make research results meaningful for a large number of potential SOM users, the most widely adopted SOM 
package, SOM_PAK, was used throughout this study. This freely available package (www.cis.hut.fi/research/som_pak/) 
relates quite closely do the classic SOM algorithm (5) and allows fine-tuning of various training parameters, beyond 
what is found in more recent, including commercial, applications. 
To date, almost all SOM implementations have used the Euclidean distance function to compute vector dissimilarity. In 
SOM_PAK, this is the only built-in distance function. In the first experiment described below, this standard Euclidean 
measure was used. In the second experiment, a spherical (great circle) distance measure was used, with noticeable 
effects.  

3.3. Neural Network Application 
Following the training procedure, the neural network can be applied to any collection of points exhibiting the same 
dimensionality. This amounts to a winner-takes-all procedure, in which the closest matching neuron is determined for 
every input point. In this study, the result of network training is a two-dimensional map of the world, i.e. a regular grid 
with latitude and longitude values for every neuron. At that point, the trained SOM can indeed act as a non-linear map 
projection. Other geographic data can be “projected” by applying the neural network to it. This includes not only point 
features (e.g., world cities), but also line features (e.g., rivers) and area features (e.g., continents) (Figure 2). Patterns of 
distortion then become readily apparent, in accordance with the degree to which more or less agreeable geographic 
structures emerge. 
 

 
Figure 2. Layers to which the trained neural network was applied later in this study. 

4. EXPERIMENT 1: EUCLIDEAN DISTANCE 

4.1. Training 
In the first experiment, the set of 14489 geographical coordinates is fed to SOM_PAK while using the default Euclidean 
distance measure. Thus, what is ultimately being implemented in this experiment is not really a map projection, i.e., we 
do not project from a curved, closed, two-dimensional surface to the planar display surface. Instead the procedure 
amounts to measurements taken from a Plate-Carree projection. Knowledge of this fact drives the determination of 
SOM shape. Choosing a 2:1 ration ensures that the resulting visualization could be even more directly compared to a 
Plate-Carree projection of the same layers. This has important and valuable implications, as discussed in the 
“Interpretation” section below. In order to ensure an intricately structured SOM-based visualization, a high-resolution 
SOM consisting of 125000 neurons (500x250) was created. After several attempts, a total of 2 million training cycles 
was run. Training took about 48 hours on an 800 MHz Pentium III PC. 



 
Figure 3. Several layers projected onto a SOM trained using the Euclidean distance measure. 

4.2. Visualization 
In SOM_PAK, the best-matching neurons were assigned to each vertex of the various input layers. The number of 
involved vertices ranged from almost 9000, for the 30-degree graticule, to more than 30000, for the country outlines. 
Newly established, two-dimensional vertex coordinates were then reassembled into point, line, and area features 
according to the original geometric structure. Finally, ArcInfo coverages were generated for each layer. Topological 
structures were also created, in the hope of being able to more easily compare area features between SOM projection 
and Plate-Carree projection. 

4.3. Interpretation 
With use of the Euclidean distance measure and the 2:1 size ratio, the resulting visualization can be directly compared 
to a Plate-Carree projection. Dimensionality reduction plays no role at all, due to the planar interpretation of geographic 
coordinates, so that all of the observed discrepancies/distortions can be traced to the SOM training procedure itself. A 
thorough interpretation of the distortions is outside the scope of this paper, but certain observations can easily be made.  
First, there are pronounced contraction effects in areas that had not contained any training data, i.e., the world’s oceans. 
It appears that the continents actually “moved” into the space occupied by oceans. Thus, the Americas, Africa, and 
Europe are now in close proximity, with the Atlantic providing only a narrow separation. In the Pacific, the contraction 
of ocean areas even leads to a shift of Australia and New Guinea to now appear just off the coast of Japan. All this can 
be readily explained with the commonly cited tendency of SOMs to preserve not relative distances, but topological 
relationships and structures existing in the input data. Thus, in the absence of training data for most the Pacific Ocean, 
New Guinea is indeed a neighbor of Japan, and the large expense of geographic space separating them becomes 
dramatically compressed. 
Second, the SOM’s edge areas are zones of tremendous space contraction. In those areas, neurons capture vast portions 
of the input space, so that it becomes impossible to map out any feature detail. Most of South Asia, West Africa, the 
South-Eastern coast of South America, and the west coast of North America are consumed by this. 
Third, contiguous zones are preserved in most of the SOM. This includes almost all countries and continents. An 
exception is Antarctica, which is broken into several portions, as indicated by line features in the Antarctic area jotting 
back and forth in the right half of figure 3. One portion of the continent is positioned just off the coast of Australia, 
another off the coast of South Africa. It appears that the very elongated shape of Antarctica, as appearing in the Plate-
Carree projection, contributed to this. 

5. EXPERIMENT 2: SPHERICAL DISTANCE 

5.1. Training 
The second experiment used the same set of 14489 geographic coordinates as described above. The initially chosen 
procedure differed from the first experiment in only two major ways: the employed distance measure and the shape of 
the neuron grid. Further modifications were made in response to early training results. 



While SOM_PAK does not provide a spherical distance measure, the use of alternative measures was anticipated by 
SOM_PAK’s authors. Implementation of the spherical measure was not too difficult. A measure was chosen that does 
not require spherical trigonometric computations (11). With the use of a spherical measure, it becomes more difficult to 
prescribe a certain SOM shape, as opposed to the 2:1 ratio that is appropriate for the Euclidean measure. Consequently, 
a square shape was chosen for the second experiment. 
In order to compare results of the two experiments, a similar total number of neurons was initially chosen for the 
spherically trained SOM (350x350 = 122500 neurons versus 125,000 neurons in the first experiment). However, it 
became clear very quickly, that the spherical measure would lead to a dramatic increase of training time, when 
compared to the much simpler Euclidean measure. On an 800 MHz Pentium III PC, training was estimated to take 26 
days, for the same number of training cycles. It also turned out that an equal number of training cycles would still not 
lead to comparable results of spherical and Euclidean measures. A much larger number of cycles would be necessary to 
create meaningful planar, two-dimensional structures from the curved surface that is the basis of spherical 
computations. Training times of several weeks to months would be necessary to produce results comparable to the first 
experiment. For the purposes of this study, the spherical measure eventually was used to train a much coarser SOM 
(50x50 = 2500 neurons) with a much larger number of cycles (25 million cycles), when compared to the Euclidean 
measure. This took 54 hours on a 2.2 GHz Xeon PC. 

5.2. Visualization 
The same number of layers of projected onto the trained SOM as in the first experiment. Clearly, despite the coarse 
SOM and intensive training, a multitude of stresses remain, as indicated by line features crossing the map in various 
places (Figure 4). The multitude of crossing lines and the coarseness of the SOM renders this visualization virtually 
undecipherable. 

 
Figure 4. Several layers projected onto a SOM trained using a spherical distance measure. 

 
In order to make sense of the effects of the spherical measure, a modified version was created (Figure 5), in which only 
the country layer is included. In addition, this remaining layer was edited by removing some of the lines that run across 
it. The resulting topological improvements make it easier to recognize continental outlines. In addition, label points 
given in geographical coordinates were projected using the trained SOM and the corresponding country names added to 
the map.  

5.3. Interpretation 
One first observation concerns the effects of SOM “resolution,” i.e., the average amount of space owned by each 
neuron. With only 2500 neurons, much geographic detail is lost. This mostly affects the geometric detail with which 
country outlines are represented. In the case of smaller countries, their geographic area may become associated with a 
single neurons, in which case they are missing from this map altogether. 
Most observations made with respect to the Euclidean solution still hold true, indicating seemingly universal aspects of 
SOM training. This refers particularly to the contraction of empty portions of the input space and the extreme 
contraction of edge areas.  
More directly related to the effects of the spherical measure is the fact that the overall arrangement of landmasses 
apparently corresponds to the Euro-centric position of standard map projections. Considering how SOMs handle empty 
feature space portions, this is most likely due to the concentration of land areas opposite the Pacific.  
Using the spherical measure it is surprising that Antarctica should be broken up into two major portions, one situated 
off the coast of South Africa and Australia and the other positioned on the left side of the map, off the coast of the 



Americas. Each portion is further subdivided, though this seems more caused by SOM resolution and its effect on the 
projection of polygon features. 
In order to investigate the break-up of Antarctica, the SOM was juxtaposed with a map of the Antarctic region (Figure 
6). In this visualization, squares correspond to the centroids of SOM neurons. Naturally, they are spaced evenly in the 
SOM. In the polar map, they are distributed densely over land areas and sparsely over ocean areas, confirming earlier 
comments regarding expansion/contraction and the corresponding levels of detail. Coloring of squares indicates how the 
Antarctic sub-regions in the SOM relate to locations in the polar map. Shown as red dots are the initial sampling 

 
Figure 5. Edited country outlines and labels based on a SOM trained using spherical measure. 

 
Figure 6.  Use of a projection in polar position (left) helps to explain the break-up of Antarctica when using a spherical 

distance measure during SOM training (right). 



 
 locations that were used to train the SOM. While they are fairly evenly placed in Africa, Australia, and South America, 
they form concentric circles near the South Pole. As far as the SOM training procedure is concerned, this leads to a zone 
of separation between the portion facing the Americas and the major body of the Antarctic continent facing South 
Africa and Australia. In other words, the break-up of Antarctica appears to be caused by the initial projection used to 
create input data, i.e. Eckert IV. Further experiments using input data derived from a global grid system (10) should 
help to confirm this. 

5. CONCLUSIONS 

The paper presented a new approach for exploring distortion issues surrounding the SOM method. By eliminating any 
effects of the so-called “curse of dimensionality” in the first of two experiments, it showed how significant distortions 
can be. A few characteristic patterns were noted. Some are readily explained and provide valuable insight for the use of 
SOMs and other artificial neural networks. Take the pronounced contraction of feature-less portions of the input space 
as an example. It illustrates the need to train generalizable neural networks by utilizing training data that reflect the 
range and intricacy of a feature space. At the same time, the experiments illustrate the need to avoid over-training, 
which refers to a neural network that is more a representation of the input data than a reflection of the domain space 
from which input data originated. 
This basic methodology could be elaborated further, in order to develop guidelines for use of the SOM method, beyond 
what is currently being provided in commercial and academic SOM implementations. This is particularly urgent in the 
light of a growing number of information visualization systems, in which the SOM method forms the dominant vehicle 
for communicating high-dimensional information spaces to users. The described methodology is suitable to obtain 
further visual examinations of the effects of such parameters as resolution, grid shape, neighborhood size, and training 
length on the trained SOM. 
As for the results of the second experiment, it would appear that geometric and computational complexity do for now 
preclude practical implementation of the proposed map projection. Projection from a curved, closed surface to a planar 
map surface via SOM seems too complex to be feasible, at least with the standard SOM algorithm and the spherical 
measure used here. Future research incorporating distributed computing and recent developments, such as “growing” 
SOMs, may yet lead to practical versions of a truly cartographic projection.  
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