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Abstract

In recent years, the proliferation of multi-temporal census data products and the increased capabilities of

geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic

census data. Traditional cartographic methods for illustrating socioeconomic change tend to rely either on

comparison of multiple temporal snapshots or on explicit representation of the magnitude of change occurring

between different time periods. This paper proposes to add another perspective to the visualization of temporal

change, by linking multi-temporal observations to a geometric configuration that is not based on geographic

space, but on a spatialized representation of n-dimensional attribute space. The presented methodology aims at

providing a cognitively plausible representation of changes occurring inside census areas by representing their

attribute space trajectories as line features traversing a two-dimensional display space. First, the self-organizing

map (SOM) method is used to transform n-dimensional data such that the resulting two-dimensional con-

figuration can be represented with standard GIS data structures. Then, individual census observations are

mapped onto the neural network and linked as temporal vertices to represent attribute space trajectories as

directed graphs. This method is demonstrated for a data set containing 254 counties and 32 demographic

variables. Various transformations and visual results are presented and discussed in the paper, from the

visualization of individual component planes and trajectory clusters to the mapping of different attributes onto

temporal trajectories.
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1. Introduction

Visualization of population census data by cartographic means has for many decades

been an important tool in the hands of demographers, policy makers, and community

groups. The advent of GIS and related analytical approaches further increased the

prevalence of map-based solutions among the various consumers of census data. In

recent years, technological advances involving databases, computational power, and

user interfaces have led to an entirely new generation of interactive, exploratory, visual

techniques designed to further our understanding of the vast data sets collected by such

entities as the U.S. Department of Commerce and the U.S. Census Bureau. The research

presented here suggests a novel perspective on the visualization of demographic data

using GIS, beyond traditional geographic depictions and with particular focus on multi-

temporal census data.
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Population census data are collected at regular temporal intervals and with relatively

fine spatial resolution. Within the ontology of administrative areas, census data are easily

aggregated at a desired granularity, to serve needs from the neighborhood to the regional,

state, and national level. The corresponding tessellations of geographic space are readily

represented using common GIS data structures and linked to well-formed attribute tables.

In the process, commercial off-the-shelf (COTS) GIS has become a standard tool for

analysis of census data. Almost without exception GIS is used in this context solely for

analysis and visualization with reference to geographic space.

At the same time, there has been a growing interest in using highly computational

tools for analyzing geographic data in attribute space. In the literature one will find

discussions of how various methods could be applied to particular types of data [16].

Many researchers develop and interpret such methods in the light of a possible paradigm

shift towards geocomputation, as compared to traditional statistical inference [4], [12],

[17]. The self-organizing map (SOM) method [8], also known as Kohonen map or self-

organizing feature map (SOFM) is one of the methods increasingly adopted within

geocomputational models, including the analysis of census data. This paper introduces a

new approach to the analysis of multi-temporal, multi-attribute, geographic data, in

which the dimensionality reducing ability of the SOM method is combined with the

integrated handling of two-dimensional geometry and associated attributes provided by

GIS.

This new SOM-based visualization approach is demonstrated in an experiment involving

longitudinal, county-based, demographic data. The proposed approach extends existing

methods in a number of ways. First, the data structures, transformation mechanisms, and

visualization tools of COTS GIS are heavily employed, since the dominant form of self-

organizing maps is that of a two-dimensional neuron lattice. Second, it is proposed to let

that neuron lattice be constructed from a much larger number of neurons than there are

input data items, thus allowing the detailed mapping of individual items in attribute space.

This is in stark contrast to the typical use of SOM for clustering and classification. Third, a

multi-year database of demographic data is used for SOM training. This results in a two-

dimensional configuration that serves as a stable, detailed base map. Various thematic

layers can be mapped onto it, akin to the use of topographic base information in thematic

cartography. Fourth, we implement a cognitively plausible visualization of demographic

change, in which changes occurring inside enumeration units do not have to be deduced

from multiple depictions, but are instead made visually explicit as trajectories across

attribute space. Finally, trajectories are visually linked to other attributes related to the

studied time span, such as voting patterns or economic development.

2. Self-organizing maps and GIS

The self-organizing map is one representative of the large group of computational

methods collectively known as artificial neural networks. There is no hidden layer, as

during training the weights of output nodes/neurons are directly affected by the input
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nodes. Over the course of a large number of training runs, the neural network will tend to

replicate topological structures inherent in the training data. The SOM is then ready for

application using other n-dimensional data. Refer to Teuvo Kohonen’s monograph [8] for

an in-depth discussion of SOM principles and applications. Numerous brief introductions

to the method are found elsewhere, including in geographic contexts [4], [18], [19].

The method performs a partitioning of the n-dimensional input space in ways com-

parable to the well-known k-means clustering approach. However, an important dis-

tinction is that neurons are arranged in an explicitly ordered manner. This ordering

occurs almost always in very low-dimensional form, ranging from one-dimensional to

three-dimensional neuron lattices. The most common form by far is the two-dimensional

lattice. In this form, the propensity of the SOM method to support the visualization of

multivariate data is readily apparent, including the possible modeling of the resulting

geometric structure in GIS and visualization using traditional cartographic means.

Surprisingly, most geographic discussions and applications of the SOM method have

ignored its ability to support visualization. This is apparent whenever SOMs are discussed

in systematic treatments of geocomputational techniques, or when the geographic ap-

plications of artificial neural networks are covered [18]. Sometimes, the Kohonen map

is explicitly categorized as a clustering technique [14]. At other times, visualization is

conspicuously absent from a broad categorization of neural network applications [3] or

from a discussion of SOM applications, even if the Kohonen map’s apparent spatial

structure is recognized [18].

While integration of a visualized SOM with GIS was demonstrated as early as 1998 [10],

little progress has been made in this area since. When the SOM method is interpreted

solely as a clustering technique, then a 100-by-100 neuron grid would translate into a

10,000-cluster solution, which is indeed not too useful for traditional clustering purposes.

What then could possibly be the use of a 1000-by-1000 neuron grid (i.e., 1,000,000

Bclusters^), which will take weeks or months to train, depending on the dimensionality of

input vectors? The answer is that the Kohonen map stops being primarily a clustering

tool, and starts being a spatial layout tool usable as an alternative to methods that do not

scale up as well for data sets containing large numbers of observations and/or variables,

like multidimensional scaling (MDS). This has been utilized in some non-geographic

applications, notably in text document visualization, where vector space modeling

typically leads to document vectors of several hundred dimensions. Despite such high

dimensionality, SOMs containing from several thousand to a million neurons have been

successfully trained for use in text visualization [9], [19].

One notable exception to the dearth of attention paid to the geographic visualization

potential of the Kohonen map is found at Pennsylvania State University, where the

GeoVISTA project has advanced the research agenda in a number of ways. That project

has not only investigated new forms of SOM visualization [22], but is also addressing

one of the most pressing problems facing geographic SOM applications, i.e., the lack

of software integration between traditional, map-based geographic visualization and

attribute-centered visualization methods [5].

Despite the two-dimensional form of neuron lattices in most SOM applications, their

representation and further processing in GIS can meet some unexpected hurdles. With
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even spacing between nodes and a field-like conceptualization of attribute space [20], a

raster representation suggests itself, with the n-dimensional neuron vectors likened to the

multi-spectral pixels of a satellite image. What is, however, not supported by most raster

GIS implementations are the hexagonal neighborhoods (i.e., six neighbors for each node)

that are in two-dimensional SOMs more common than square neighborhoods (i.e., four

immediate neighbors). Standard GIS vector data structures can support both neighbor-

hood forms and allow integrated manipulation of geometric and attribute structures. For

example, high-dimensional clusters can be represented as two-dimensional polygons

following the dissolution of boundaries between neurons that are part of the same cluster.

In the research described here, the SOM uses a hexagonal neighborhood and its polygon

geometry is ultimately stored as a feature class in an ESRI Geodatabase (Figure 1), with

associated n-dimensional neuron vectors stored in relational tables.

3. Trajectory mapping with self-organizing maps

3.1. Existing methods for visualizing demographic change

How can one visually represent changing attribute values of spatially fixed geographic

objects, e.g., changing population attributes for a number of states or counties? One

answer would be to compute and explicitly visualize attribute differentials using a

change map, e.g., a map of population growth from 1980 to 1990. Another common

approach relies on map comparison by creating multiple maps using the same underlying

base map. For example, maps showing population numbers for 1980 and 1990 would be

placed side-by-side. Although these techniques can be useful and are familiar to many

map users, they provide a minimal amount of information relating to the changing

variables. Simple percentage-change maps can mask the intra-period characteristics of

change across multiple periods, while side-by-side comparisons are generally only useful

for illustrating changes in total values of attributes. One of the goals of this project is

to render a visual representation of multi-decadal census change that parsimoniously

communicates more information to the viewer.

The GeoVISTA research group has extended the principles underlying side-by-side

comparisons to three-dimensional, SOM-based spatialization of census data [22]. They

Figure 1. Simple SOM geometry consisting of nine nodes and represented with polygon geometry in GIS.
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describe two methods for change visualization. One method called Bchronological cluster

analysis^ creates a different SOM and visualization for every time period. The other

method called Btemporal cluster analysis^ trains a single SOM with data from all time

periods as input, then creates different visualizations by applying the trained SOM to

data from different time periods. The primary difference between these SOM-based

approaches and common geographic change visualizations is that they are not bound by

the existing geometry of geographic space, but instead attempt a holistic, simultaneous

representation of a large number of variables in attribute space. However, they still leave

it to the human observer to detect changes visually.

3.2. SOM trajectories for visualizing demographic change

We propose to explicitly represent changing attribute values of geographic objects as

movement of these objects across the two-dimensional SOM surface. Visualization of

trajectories on top of a trained SOM was already suggested by Kohonen [8], although

it is still not very frequently implemented in most standard SOM software. The

SOMToolbox for Matlab is an exception in this. SOM-based trajectories discussed in

the literature are often derived from multi-temporal observations, such as when tracing

changes in a power transformer over the course of a day [8] or when a bank’s financial

parameters are tracked over several years [1].

The specific form of a trajectory proposed here derives from the notion of cognitive

plausibility [2]. Demographic data are typically represented in a manner that is both

spatially and temporally discrete, at well-delineated, stable, spatial locations and fixed

moments in time. For example, while data capture activities for the 2000 U.S. census

may have taken several months, it is understood as a snapshot of the U.S. population as

of April 1, 2000. For that moment in time, a given aggregation unit (e.g., a state or

county) can be conceptualized as a locus in attribute space and therefore visualized as a

zero-dimensional, point feature in a spatialization [2]. Different moments in time would

lead to different loci. Given the continuous nature of temporal change typical for most

census variables (certainly at the aggregation levels at which census data are handled by

most users) and the natural order of time, different loci for the same unit can be linked to

form a trajectory. In a visualization, the most natural representation of that trajectory

would be through a directed, non-branching graph.

One major driving concern of this work has been the desire to obtain visual mani-

festations of common verbal expressions for complex multi-temporal relationships be-

tween geographic objects. For example when one says that two counties exhibit parallel

patterns of development, this would assume somewhat similar (though not necessarily

identical) loci at the same moments in time, which over multiple time periods leads to

parallel trajectories. On the other hand, diverging development will correspond to

trajectories that start with early loci in relative proximity, but later loci that are far apart.

When individual loci or whole trajectories are then linked to policy decisions (e.g., tax

laws or welfare regulations), then relationships between trajectories and specific socio-

economic developments may become expressed quite explicitly.

VISUALIZING DEMOGRAPHIC TRAJECTORIES WITH SELF-ORGANIZING MAPS 163



4. An experiment with demographic data

4.1. Source data

The demographic data set utilized in this experiment includes all of Texas’ 254 county

units with 32 sample socio-economic attributes for the periods 1980, 1990, and 2000.

Digital files for the 1980 census are not as readily available as are files for 1990

and 2000. There are however, an increasing number of commercial vendors who have

collected those data and make them available in a digital format, including linking

multiple reporting years by geographic units. Obviously, projects such as this will be

greatly aided by the proliferation of these temporally linked census data sets. For this

research we extracted data for 1980 and 1990 from previously acquired commercial

sources [6], [7]. Data from the 2000 census were extracted from the U.S. Census

Bureau’s web site.

Longitudinal analysis of census data can be problematic due to the evolving nature

of data definitions, classifications, and collection methods employed by the Census

Bureau. For example, there had been significant changes in the way ethnic/racial

categories have been collected and catalogued with every decennial census. With this

concern in mind, we included 32 county-scale attributes from each census for which

comparable values were either reported or could be generated from available data. For

all three census periods, ethnic/racial attributes were recalculated to separate Hispanic/

Latino populations from each of the other race/ethnicity classifications, thus providing

a more detailed illustration of changes within these ethnic groups. Additional attributes

were selected relating to three broad categories other than race/ethnicity. These in-

cluded housing, income, and workforce characteristics. All 762 observations (254

counties � 3 temporal samples) for each variable were normalized to a 0Y1 range for

the complete twenty-year time period. Although the method of analysis employed here

can easily accommodate a much greater number of attributes, the primary purpose of

this project was to illustrate the computational and visualization technique. Therefore,

out of convenience, the dataset was limited to the 32 attributes from the categories

described above. Future research will focus more directly on the specific attribute

selection and will seek to include a larger number of comparable attributes in the

analysis.

Additional data sets were collected for the three periods to illustrate the utility of

linking the census-based trajectories with potentially related attributes of counties. One

of these data sets contained results of the six presidential elections held between 1980

and 2000. These data include nominal values for each county indicating whether the

majority voted for the Democratic or Republican candidate in each election. These data

were acquired from the U.S. Census Bureau and the Texas Secretary of State’s web site.

Business and employment data for each county were collected for the years 1980, 1990,

and 2000 from the U.S. Census Bureau’s annual County Business Patterns publication.

Average business size, calculated by dividing the total number of employees by the total

number of business establishments in each county, was calculated for each of the de-

cennial census years.
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4.2. Neural network training

Training of the self-organizing map was based on Kohonen’s standard algorithm, as

implemented in SOM_PAK, a freely available software package (http://www.cis.hut.fi/

research/som_pak/). Before beginning the actual training procedure, the two-dimensional

shape and size of the neural network has to be defined. As discussed earlier, this is where

our implementation already differs from most examples of SOM found in the literature,

in that the number of neurons significantly exceeds the number of observations. The

main goal is thus to observe not the clustering of counties within neurons but to enable

the emergence of detailed geometric structures in the two-dimensional display space.

Given the set of 762 n-dimensional vectors (n = 32), a neuron lattice consisting of 10,000

neurons (100 � 100) provides the ability to replicate both Bglobal^ and Bregional^
patterns existing in the data set. In order to observe true self-organization, each of the

10,000 neuron vectors (n = 32) was initialized with random weights. In practice, one

frequently initializes vector weights according to scores for the two principal compo-

nents [8].

During training, the input vectors are presented to SOM_PAK’s training procedure in

random order. At each step, the best matching neuron vector is found for each input

vector. Weights for that neuron vector are then adjusted such that the existing match

strengthens even further. In addition, vector weights for neurons within a defined

neighborhood of the best-matching neuron are also adjusted towards providing a stronger

match with the input vector. All the input vectors are presented to the SOM and

processed in the same fashion. Over the course of many repeated training steps, this leads

to a replication of major topological structures existing in high-dimensional space. One

could also interpret the training process as density mapping, since larger congregations

of input vectors in attribute space will cause the reinforcement of neuron weights for a

large number of neighboring neurons. The opposite is true for portions of the attribute

space that are barely occupied by actual input vectors. Relative to n-dimensional dis-

tances, expansion and contraction effects can thus be observed. These are at the heart

of how the SOM method achieves the bridging of a wide dimensional gap between

n-dimensional input data and the low-dimensional grid of neurons. In this experiment,

the SOM was trained for 1,000,000 cycles, which took 220 minutes (wall clock time) on

a 1.3 GHz Pentium III PC.

4.3. Visualizing the self-organizing map

The software used for SOM training provides only rudimentary visualization capabilities.

There are some attractive alternatives for visualization, like the SOMToolbox for

MatLab or Eudaptics’ Viscovery SOMine. However, one of the goals of this experiment

was to test the leveraging of GIS functionality in processing the 2-D neuron lattice

created during SOM training. A commercial GIS product (ESRI ArcGIS) was used to

perform most of the processing and visualizations presented in this paper. Some additional

software components were written, e.g., to create polygon geometry for 10,000 neurons
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arranged in a hexagonal pattern (Figure 2). All of the geometric data produced in the

process were eventually stored as feature classes in an ESRI Geodatabase. These include

neuron polygons, cluster polygons, coordinates for individual counties, and county

trajectories.

After neural network training, every one of these neurons is associated with an

n-dimensional vector. A common first step in investigating training results is to inspect

vector weights for all the neurons, one component plane (i.e., variable) at a time. In

standard SOM visualization this has traditionally been done through coloring of

individual neurons. Instead, we used GIS software (ESRI ArcGIS Geostatistical Analyst)

to interpolate a raster surface from the 10,000 neuron centroids for each of the n input

variables. Some of these are shown in Figure 3. Lighter shading corresponds to higher

values, darker shading to lower values for a particular variable.

This visualization of individual variables already allows the detection of major regions

in the SOM. For example, densely populated, presumably suburban and urban, areas are

concentrated in the upper right corner, while high percentages of rural farm populations

are found in the lower left quarter of the SOM. Some of the relationships between

variables also become clear. Some variables show correlated patterns, either universally

or only for portions of the attribute space. For example, in the extreme upper right corner

one can find elevated population density combined with local maxima in household

income, travel times to work of 45Y59 minutes, and number of rooms per housing unit.

In their combination, this is indicative of prototypical upper middle-class suburbia,

where families with relatively high income live in newer subdivisions outside of major

urban areas, but within commuting reach. Other such examples include the co-occurrence

of a large percentage of employed persons walking to work with the percentage employed

in the armed forces. Negative correlations may also be observed. Note how elevated

values for Hispanic and black populations seem to show no overlap at all indicating

that, at least in Texas during this time period, they do not tend to occur simultaneously

within the same county.

Figure 2. Polygon geometry for SOM consisting of 10,000 neurons.
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4.4. Visualizing single-time feature vectors

Following neural network training, SOM_PAK determined which of the 10,000 neurons

best matched each of the 762 county vectors. The x and y index numbers of the best-

matching neuron are assigned to each county vector. Given the hexagonal shape of

the 2-D neuron lattice, those index numbers had to be transformed to correspond to the

centroids of neuron polygon geometry (see Figure 2). With 10,000 available neurons, the

matching of observations against neurons leads to unique two-dimensional coordinate

locations for most of the 762 input observations (Figure 4).

Once unique coordinate pairs are extracted for each observation, one simple form of

investigating temporal patterns in attribute space would be to visualize the year cor-

responding to each location. Clustering of neurons can further help to reveal certain

patterns in the data. Since every one of the neurons is associated with an n-dimensional

vector, standard cluster analysis methods are applicable. What is shown here (top right

portion of Figure 5) is a k-means cluster solution for the 10,000 n-dimensional neurons

(k = 40; n = 32). When looking at the result (bottom of Figure 5), it seems that certain

portions of attribute space were Babandoned^ during the 1980’s (i.e., the time between

the 1980 and 1990 censuses), as indicated by the lack of any post-1980 observations in

some regions. Specifically, there are two regions subject to this abandonment (center of

Figure 3. SOM component layers visualized after interpolation in GIS.
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Figure 4. Mapping of 762 county records onto SOM.

Figure 5. Time-stamped overlay of 762 county locations with clustering of SOM neurons.
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Figure 6). To investigate this further we use the k-means clusters as selection mechanism.

All the 1980 locations are selected from the two major abandonment regions (top center

and bottom left in the 2-D SOM space) and the corresponding counties visualized in

geographic space. Interestingly, these counties hail from geographically meaningful

regions.

The top region encircled in Figure 6 is comprised of counties located exclusively in

the eastern half of Texas. This region underwent increasing urbanization during this time

period, with economic development patterns indicative of transition from an agricultural

and resource extraction economy to a manufacturing and service sector economy. This

trend can be tied to historical changes in the role of East Texas in the petroleum industry

and population growth in the numerous urban nodes associated with the transportation

corridors of U.S. Interstate Highways 35, 45, and 20. Looking at the component planes

(Figure 3), it appears that this SOM region corresponds to very high values in the Bcar

pool to work^ variable. One reasonable explanation would be that in 1980, with the energy

crisis of the late 1970’s still in full swing, a large percentage of employees in these counties

were carpooling to work. With the relaxation of the energy market in the 1980’s, these

levels of carpooling dropped off significantly and have not been reached since. At the same

time, other variables changed (though less dramatically), like an increased population

density and, compared with other Texas regions, higher income growth.

The abandonment region in the lower left portion of the SOM could be investigated

similarly. That SOM region corresponds to Texas’ highest values of rural population

living on farms (see Figure 3). The corresponding geographic region has long been

dominated by agricultural activity. Abandonment of this region would fit with the

structural changes occurring in agricultural production in the 1980’s, as particularly

experienced by traditional, smaller-scale, family farms.

4.5. Visualizing multi-temporal feature trajectories

The core idea of this paper is that the explicit delineation of n-dimensional trajectories in

a two-dimensional display space may add to our understanding of demographic change.

Figure 6. Investigation of two attribute space regions abandoned after 1980.
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Some interpretation of temporal change is possible without these trajectories, if clusters of

same-time observations can be made out, as discussed in the previous section. However,

this still does not indicate whether members of such regions developed in similar ways

after being similar at some moment in time. Knowing the specific path taken by individual

counties and groups of counties can provide such information. As explained earlier, we

are hoping to be able to see parallelism, convergence, divergence, and other aspects of

change, more directly than what is provided in other methods. This is what the trajectory

approach proposed here hopes to achieve.

The location of a county at a particular point in time is understood as a temporal

vertex within a directed graph, in which direction derives from the forward motion of

time. The 762 county observations are thus transformed into 254 trajectories, with the

1980 location forming the first vertex, and so forth. We assemble these as ArcInfo

Generate files, which are converted into ArcInfo coverages and eventually stored as

feature classes in a Geodatabase. At a global scale, there is not enough display space to

add arrows to indicate directionality or to label individual trajectories with county names

(right half of Figure 7). This changes when one is sufficiently zoomed in. Notice how the

rich set of visualization tools offered by desktop GIS becomes relevant once the SOM

and its derivatives become represented in the geometric and attribute structures of GIS.

Once zoomed in, one could, for example, investigate how counties in the agriculturally

dominated region mentioned earlier developed after 1980 (center of Figure 7).

Highlighted are four counties that are located in close proximity in 1980. Comparison

with the component planes (Figure 3) supports interpretation of trajectory patterns. By

the 1990 census these four counties had developed in very different ways, with

Collingsworth and Hall moving towards the lower left indicating continued low

population density and large percentage of rural population, but lower percentage of

rural farm population. Meanwhile De Witt and Gonzales counties move towards the

right, towards stronger income growth compared to the Texas average (that is how

income was normalized), but also towards a higher percentage of employees having to

commute between 45 and 59 minutes. This is fairly typical of the rapidly urbanizing

development patterns occurring in that region after 1980 resulting from the proximity of

both counties to the San Antonio Metropolitan Area and the corridor formed by Interstate

Highway 35. Notice how parallelism within the two pairs visually suggests parallel

Figure 7. Linking of temporal vertices to form trajectories and investigation of cases of parallel development.
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development paths. Particularly intriguing is how the two pairs of parallel trajectories

correspond to geographically adjacent counties, suggesting that trajectory patterns may

be indicative of a kind of multi-temporal spatial autocorrelation.

There are also examples of apparent convergent or divergent development, as seen in

Figure 8. Waller and Panola counties start out at different Blocations,^ but by 2000 their

attributes are so similar that the two counties become associated with same neuron, all of

which is visually indicated through converging trajectories. On the other hand, Hockley

and Yoakum counties are similar enough in the 1980 and 1990 censuses that the

corresponding trajectory sections are identical. After 1990, their paths diverge and they

end up being associated with different neurons by 2000.

4.6. Geometric transformations of feature trajectories

There may be a number of reasons for applying certain geometric transformations to

trajectories. The trajectories presented so far are constructed from multi-temporal vertices

whose locations correspond to the centroids of the best-matching neurons. However,

depending on the total number of neurons in the SOM (i.e., the SOM resolution) multiple

feature vectors may become associated with the same neuron and would thus become

represented as identical temporal vertices. While this itself forms the basis for the most

convincing cases of divergence and convergence (see previous section), it can lead to

ambiguity, especially when trajectories are aligned with basic SOM geometry. For

example, in the left portion of Figure 9 the trajectory structure for Potter and Lubbock

counties is ambiguous. Disambiguation of temporal vertices helps to sort this out. The

approach shown here is based on randomly distributing temporal vertices near neuron

centroids instead of placing them exactly on the centroids (right portion of Figure 9) [19].

Another approach would consist of computing vertex coordinates as the weighted

centroid of the three best-matching neurons [11].

Figure 8. Examples of convergence and divergence in the development of counties.

VISUALIZING DEMOGRAPHIC TRAJECTORIES WITH SELF-ORGANIZING MAPS 171



Another possible transformation of multi-temporal trajectories may involve the

insertion of additional temporal vertices. For example, one could insert a vertex for the

year 1985 in between vertices for 1980 and 1990. Assuming linear demographic

development and a SOM without internal distortion of relative feature distances, one

would expect that such an additional vertex would add no additional information, since it

would be positioned directly on the existing trajectory and exactly half-way between

neighboring temporal vertices. However, SOMs do in fact contain significant distortions,

just like traditional cartographic projections [21]. The SOM method may preserve major

topological relationships when representing n-dimensional data in two dimensions, but at

the cost of significant contraction and expansion, as explained earlier. Thus, intermediate

temporal vertices will actually be located off the original trajectory and at varying dis-

tance to either of the existing vertices. Insertion of such intermediate vertices would thus

help in making more informed judgments about relationships between trajectories. See

Figure 10 for an example of this transformation. For each county, values for the years

1985 and 1995 are linearly interpolated for each variable and the resulting n-dimen-

Figure 9. Disambiguation of temporal vertices through random placement within respective neuron polygons.

Figure 10. Insertion of additional vertices after temporal interpolation of attribute values.
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sional vectors mapped on the SOM. These point locations are then inserted into tra-

jectories as supplementary temporal vertices.

4.7. Clustering of feature trajectories

A number of investigative approaches could be envisioned to perform further analysis

using these trajectories in conjunction with all the other layers already discussed. For

example, whole trajectories (instead of observations stemming from individual time

slices) could be clustered in high-dimensional space and projected back onto the base

map for further investigation. To illustrate this, we compute a k-means cluster solution

(k = 4) for the n-dimensional vectors of all 254 counties (n = 96 = 32 variables � 3 time

samples). In other words, whereas during SOM training all multi-year observations for a

particular attribute were treated as referring to the same dimension, the observations for

each variable are now separated into individual dimensions for each year. Thus, if two

counties have similar values for all variables for all years, they would be considered very

similar. However, if they had very similar values for two years, but very different values

for the third year, their n-dimensional trajectory is less similar, and so forth. In other

words, counties that develop in similar ways tend be grouped together.

The resulting clusters are mapped onto the base map of 254 trajectories and also

visualized in geographic space (Figure 11). All of these high-dimensional trajectory

clusters occupy fairly compact areas of the SOM. Two of the clusters are also very

clearly geographically delineated. One stretches along the U.S.YMexico border, an area

with consistently high Hispanic population percentage, as indicated by a very compact

region in the SOM, except for a single county moving into this region from the upper left

Figure 11. Clusters from a k-means cluster solution for county trajectories (k = 4).
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corner. Another geographically well-organized cluster occupies almost all of eastern

Texas and combines one of the abandonment areas discussed earlier with Texas’ major

urban centers. The other two trajectory clusters are a bit more heterogeneous, especially

when viewed in geographic space. Members of one cluster are concentrated particularly

on the TexasYNew Mexico border. The fourth cluster is the least well-organized, as

indicated by a fairly dispersed pattern in SOM space and geographic space. Such hete-

rogeneity may be grounds for critiquing the cluster method and parameters chosen here,

but one has to remember that the purpose of clustering in an exploratory setting may not

be to find the most optimal tessellation of attribute space (which tends to be computa-

tionally expensive for large, high-dimensional data sets), but rather to suggest interesting

patterns and relationships that may then be explored and confirmed using other methods.

Indeed, this example should make it clear that the visualization methods illustrated in

this paper will serve their ultimate purpose not in the context of traditional GIS-based

visualizations that focus on creation of the Bsingle optimal 2D map^ [13]. Most inter-

pretations presented in this paper were arrived at as the result of exploratory combination

of various input data and intermediate results, such as when overlaying trajectory clusters

on component planes. The trajectory visualization approach proposed here should be

understood as one element in a growing arsenal of knowledge discovery tools that will

ultimately be part of highly interactive, exploratory, geographic visualization environ-

ments. Such systems may provide guidance for making informed choices among

methods (e.g., k-means, fuzzy k-means, hierarchical) and method parameters (e.g., k = 4,

distance measure = Euclidean), from default settings to cautionary messages about the

appropriateness of certain approaches for certain data types. However, ultimately it is the

almost playful combination of methods and parameters that holds the greatest promise,

from how data are processed to how the results are symbolized. While confirmatory

analysis will still be mostly done using more traditional, statistical approaches, the kinds

of methods described in this paper will increasingly allow researchers to discover and

explain relevant patterns within large data sets.

4.8. Linking trajectories to other attributes

Mapping of administrative units, such as counties, in attribute space may be especially

attractive if it is linked to other information related to demographic factors. Electoral

behavior is one aspect of particular interest to many policy-makers. To illustrate the use

of trajectories to this end, county trajectories are linked to results from the six

presidential elections held between 1980 and 2000 (Figure 12). Counties are separated

into two broad categories that are displayed in the two maps in Figure 12. On the left,

counties are highlighted in which the majority voted for the Democratic candidate in at

least four out of six elections. On the right, counties are highlighted in which the

Republican candidate received the most votes in at least four out of six elections. The

magnitude of electoral consistency is expressed through line thickness. In the Republican

map, apart from the apparent dominance of Republican votes, the most notable patterns

are indicated by a lack of highlighted trajectories in areas that correspond to large
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percentages of minority populations (Hispanic in the lower right; Black in the upper left).

Conversely, those areas contain most of the highlighted trajectories in the Democratic

map, but with noticeably more consistent support for Democratic candidates in counties

with very high Hispanic populations.

Other suitable candidates for data to be mapped onto trajectories include various

economic indicators. This can range from simple raw counts (e.g., number of bankruptcies)

to more complex measures. The latter is illustrated in Figure 13. This variable expresses

changes in the ratio of the number of employees to the number of businesses, which serves

as a rough measure for overall business size within each county. County-level decreases of

that ratio are shown on the right, while increases are shown on the left. It is assumed that

increasing ratios will correspond to changes in the county’s economy leading to larger

businesses (e.g., a county that has attracted large employers during this period). This

pattern might be observed in a county that is transitioning from a primarily agricultural

economic base to a manufacturing or service-industry base. Decreasing ratios are caused

by the loss of larger firms in a county or a rapid proliferation of smaller firms (e.g., service

and retail). This pattern might be observed in counties that are undergoing rapid

Figure 13. Changes in the ratio of numbers of employed persons to numbers of businesses, 1980Y2000.

Figure 12. Voting behavior in the six U.S. presidential elections held between 1980 and 2000.
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urbanization such as a county on the periphery of a large and expanding urban center,

leading to an increase in smaller service and retail businesses. Or perhaps the declining

ratio indicates a county that is in economic decline due to the loss of one or more large

employers. The patterns that emerge are heterogeneous overall, but with decreases of the

business-size ratio concentrated in the lower left of the 2-D SOM space. These correspond

to rural counties that may have experienced a declining number of jobs in the large-

employer commercial agricultural sector due to advances in technology, and at the same

time may be experiencing a slight increase in small retail and service firms associated with

increases in urbanization. Given the limited number of variables used to train the SOM in

this demonstration of the trajectory mapping technique, interpretation of the resulting

visualizations must proceed with caution, especially when topically heterogeneous at-

tributes are mapped onto the trajectories.

The two examples described in this section are both based on attributes that are

summarized for the complete temporal range and mapped onto whole trajectories. Not

demonstrated here, but perhaps particularly useful, would be visualizations in which

multi-temporal attributes are mapped onto portions of trajectories. One could aggregate

data for a particular temporal range, like 1980 to 1990, and map them onto the cor-

responding trajectory sections. Or one could take sharply defined temporal events and

visualize the corresponding temporal vertices with appropriate point symbols. For

example, one could visualize the enactment of different social welfare reforms and then

observe how such legislative acts relate to trajectory differences, especially in the

context of diverging and converging trajectories.

5. Conclusions

This paper proposed an approach for the spatialization of multi-temporal, multi-

dimensional trajectories using the self-organizing map method and the representation of

these trajectories as linear features in GIS. A number of geometric transformations and

visualizations of trajectories were applied. In addition, the representation of neurons with

polygon geometry and the interpolation of component surfaces in GIS were demonstrated.

For the purposes of this study, the chosen collection of 32 variables was sufficient for

demonstrating the trajectory mapping technique. In an application setting, much closer

examination of the chosen variables should take place. The self-organizing map can deal

with a much greater number of variables, as demonstrated by its use for text visual-

ization, where it is common to operate with several hundred variables. Similarly, the

method appears promising to be used for investigations involving very large numbers of

attributes dealing not only with socio-economic, but also environmental aspects. Detailed

multi-temporal data sets to support this have only recently become available and will

provide fertile fuel for future efforts.

Future research must consider how stable the visually suggested relationships between

trajectories really are. The reasons are two-fold. On one hand, such observed phenomena

as parallelism, convergence, and divergence may be sensitive to the particular distribution
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of input attributes. In our case, for example, small change in absolute values of the

population structure, especially in thinly populated, rural regions, can translate into large

relative change and longer trajectories, compared to densely populated urban areas.

Practical guidelines and specifications will have to be developed to help with prepro-

cessing of attributes prior to SOM training.

On the other hand, there is also the question of the degree to which length and shape of

trajectories are distorted by the SOM itself. A major reason for the success of the SOM

method in dimensionality reduction is that it freely contracts or expands feature space

portions depending on feature densities. As a result, the length of trajectories can be

quite distorted and absolute comparison of path lengths is ill advised, as illustrated in our

insertion of supplemental temporal vertices. SOMs also tend to exhibit compression of

feature space along its edges [21]. With respect to cognitive plausibility, recent studies

have shown that users expect two-dimensional distance relationships between point

symbols observed in a spatialization to correspond to high-dimensional similarity [15].

To complicate matters, linear connections between point objects tend to modify these

distance judgments. In summary, as a method involving both intense computation and

visualization for human end users, the trajectory approach presented here must achieve a

balancing act between cognitive and computational plausibility. Some solutions that are

cognitively plausible may be indefensible in the light of distortions introduced by a

particular technique, and vice versa.

Software integration remains a difficult issue. The experiment described here relies on

loose coupling of SOM and GIS components. Despite this, the potential utility of the

method toward enhancing our knowledge of the temporal nature of demographic data is

well represented in this paper. Closer integration in the course of ongoing research

promises to further ease the mapping of n-dimensional attribute space trajectories. Given

the increased availability of high-dimensional attribute data in a number of areas, from

satellite remote sensing to ecological modeling, the potential usefulness of the proposed

methodology may well extend beyond the socio-economic context in which it is in-

troduced here.
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