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ABSTRACT 
This paper introduces an approach for closer integration of self-
organizing maps into the visualization of spatio-temporal 
phenomena in GIS. It is proposed to provide a more explicit 
representation of changes occurring inside socio-economic units 
by representing their attribute space trajectories as line features 
traversing a two-dimensional display space. A self-organizing 
map consisting of several thousand neurons is first used to create 
a high-resolution representation of attribute space in two 
dimensions. Then, multi-year observations are mapped onto the 
neural network and linked to form trajectories. This method is 
implemented for a data set containing 254 counties and 34 
demographic variables. Various visual results are presented and 
discussed in the paper, from the visualizations of individual 
component planes to the mapping of voting behavior onto 
temporal trajectories. 

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: multivariate statistics, time 
series analysis. 

H.2.8 [Database Management]: Database Applications – data 
mining, spatial databases and GIS. 

I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 
cartography. 

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
Visualization, Spatialization, Cartography, Kohonen Maps, 
Spatio-Temporal Modeling, Exploratory Analysis. 

1. INTRODUCTION 
Analysis of population census data has become one of the most 
popular applications of GIS. These data are typically aggregated 
according to a given administrative hierarchy of contiguous 
geographic regions, which can be readily represented using 

common GIS data structures. Those studying geographic patterns 
of human existence and behavior have by now become well 
accustomed to the strong link between geometric and attribute 
structures that is so typical for GIS and regard commercial off-
the-shelf GIS as a standard tool for analysis of census data in 
geographic space. 

On the other hand, there has also been a growing interest in using 
modern computational tools for analyzing geographic data in 
attribute space. In the literature one will find discussions of how 
various methods could be applied to particular types of data [11]. 
Others seek to establish a new area of investigation, possibly even 
a paradigm shift, especially in comparison to traditional statistical 
inference, known as geocomputation [3, 8, 12]. The self-
organizing map (SOM) method [5], also known as Kohonen map 
or self-organizing feature map (SOFM) is one of the methods 
increasingly adopted within geocomputational models, including 
the analysis of census data. This paper presents an approach to the 
analysis of census data that leverages the dimensionality reduction 
ability of SOM with GIS’ ability to represent complex two-
dimensional geometries and associated attributes for analytical 
modeling and visualization purposes. 

A new SOM-based visualization approach is applied to 
longitudinal, county-based, demographic data. The proposed 
approach extends existing methods in a number of ways.  First, 
given that classical SOM training leads to a two-dimensional 
lattice of n-dimensional neuron vectors, the data structures, 
transformation tools, and visualization environments of COTS 
GIS can be readily utilized. Second, instead of the clustering-
oriented, traditional approach to SOM use, we propose the 
training of a high-resolution SOM containing several thousand 
neurons to allow a more detailed mapping of individual 
observations in attribute space. Third, a multi-year database of 
socio-economic data is used for SOM training resulting in a two-
dimensional configuration that serves as a stable, detailed base 
map. Various thematic layers can be mapped onto it, akin to the 
use of topographic base information in thematic cartography. 
Fourth, we implement a cognitively plausible visualization of 
socio-economic change, in which changes occurring in 
administrative units do not have to be deduced from multiple 
depictions, but are instead made visually explicit as trajectories 
across attribute space. Finally, trajectories are visually linked to 
temporal events influencing or related to socio-economic 
development, such as policy decisions or voting patterns. 

2. SELF-ORGANIZING MAPS AND GIS 
The SOM method is an artificial neural network technique that 
takes a set of n-dimensional observations as input to a training 
procedure during which adjustments are made to n-dimensional 
vectors associated with a predetermined number of neurons. Over 
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the course of a large number of training runs, the neural network 
will tend to replicate topological structures inherent in the training 
data. The SOM is then ready for application using other n-
dimensional data. Refer to Teuvo Kohonen’s monograph [5] for 
an in-depth discussion of SOM principles and applications. 
Numerous brief introductions to the method are found elsewhere, 
including in geographic contexts [3 , 13, 14]. 

Most geographic discussions and applications of the SOM method 
have ignored its ability to support visualization. This is apparent 
whenever SOMs are discussed in systematic treatments of 
geocomputational techniques, or when the geographic 
applications of artificial neural networks are covered [13].  
Sometimes, the Kohonen map is explicitly categorized as a 
clustering technique [10]. At other times, visualization is 
conspicuously absent from a broad categorization of neural 
network applications [2] or from a discussion of SOM 
applications, even if the Kohonen map’s apparent spatial structure 
is recognized [13].  

What is typically overlooked is that the predominant SOM form, 
the two-dimensional neuron lattice, lends itself incredibly well to 
the visualization of multivariate data. While integration of a 
visualized SOM with GIS was demonstrated as early as 1998 [7], 
little progress has been made in this area since. When one is stuck 
on the notion of SOM as a clustering technique, a 100-by-100 
neuron grid would translate into a 10,000-cluster solution, which 
is indeed not too useful for traditional clustering purposes. What 
then could possibly be the use of a 1000-by-1000 neuron grid 
(i.e., 1,000,000 “clusters”), which will tend to take weeks or 
months to train, depending on the dimensionality of input vectors? 
The answer is that the Kohonen map stops being primarily a 
clustering tool, and starts being a spatial layout tool usable as an 
alternative to methods that do not scale up as well for data sets 
containing large numbers of observations and/or variables, like 
multidimensional scaling (MDS). This has been utilized in some 
non-geographic applications, notably in text document 
visualization, where vector space modeling typically leads to 
document vectors of several hundred dimensions. Despite such 
high dimensionality, SOMs containing from several thousand to a 
million neurons have been successfully trained for use in text 
visualization [6, 14]. 

One notable exception to the dearth of attention paid to the 
geographic visualization potential of the Kohonen map is found at 
Pennsylvania State University, where the GeoVISTA project has 
advanced the research agenda in a number of ways. That project 
has not only investigated new forms of SOM visualization [17], 
but is also addressing one of the most pressing problems facing 
geographic SOM applications, i.e., the lack of software 
integration between traditional, map-based geographic 
visualization and attribute-centered visualization methods [4]. 

Despite the two-dimensional form of neuron lattices in most SOM 
applications (we are not considering higher-dimensional SOM 
geometries in this paper), their representation and further 
processing in GIS can meet some unexpected hurdles. With even 
spacing between nodes and a field-like conceptualization of 
attribute space [15], a raster representation suggests itself, with 
the n-dimensional vectors associated with neurons likened to the 
spectral vectors of pixels in a satellite image. What is, however, 
not supported by most raster GIS implementations are the 
hexagonal neighborhoods (i.e., six neighbors for each node) that 
are in SOM implementations a bit more common than square 
neighborhoods (i.e., four immediate neighbors). Standard GIS 
vector data structures can support both neighborhood forms and 
allows integrated manipulation of geometric and attribute 
structures. For example, high-dimensional clusters can be 
represented as two-dimensional polygons following the 
dissolution of boundaries between neurons that are part of the 
same cluster. In the research described here, all SOMs are based 
on a hexagonal neighborhood and their geometry is stored as 
either ESRI Shape files or ArcInfo coverages (Figure 1), with 
associated n-dimensional neuron vectors stored in relational 
tables.  

3. TRAJECTORY MAPPING WITH SELF-
ORGANIZING MAPS 
How can one visually represent changing attribute values of 
spatially fixed geographic objects, e.g., changing population 
attributes for a number of states or counties? One answer would 
be to compute and explicitly visualize attribute differentials using 
a change map, e.g., a map of population growth from 1980 to 
1990. Another common approach relies on map comparison by 
creating multiple maps using the same underlying base map. For 
example, maps showing population numbers for 1980 and 1990 
would be placed side-by-side. Although these techniques can be 
useful and are familiar to many map users, they provide a minimal 
amount of information relating to the changing variables. Simple 
percentage-change maps can mask the intra-period characteristics 
of change across multiple periods, while side-by-side comparisons 
are generally only useful for illustrating changes in total values of 
attributes. One of the goals of this project is to render a visual 
representation of multi-decadal census change that 
parsimoniously communicates more information to the viewer.   

The GeoVISTA research group has extended the principles 
underlying side-by-side comparisons to three-dimensional, SOM-
based spatialization of census data [17]. They describe two 
methods for change visualization. One method called 
“chronological cluster analysis” creates a different SOM and 
visualization for every time period. The other method called 
“temporal cluster analysis” trains a single SOM with data from all 
time periods as input, then creates different visualizations by 
applying the trained SOM to data from different time periods. The 
primary difference between these SOM-based approaches and 
common geographic change visualizations is that they are not 
bound by the existing geometry of geographic space, but instead 
attempt a holistic, simultaneous representation of a large number 
of variables in attribute space. However, they still leave it to the 
human observer to detect changes visually.  

Instead, we propose to explicitly represent changing attribute 
values of geographic objects as movement of these objects across 
the two-dimensional SOM surface. The visualization of 

 
Figure 1. Nine Nodes from a 3-by-3 Neural Network 

Represented as Adjoined Polygons in Vector GIS (from [16]). 



trajectories on top of a trained SOM was already suggested by 
Kohonen [5]. The specific form proposed here derives from the 
notion of cognitive plausibility [1]. Demographic data are 
typically represented in a manner that is both spatially and 
temporally discrete, at well-delineated, stable, spatial locations 
and fixed moments in time. For example, while data capture 
activities for the 2000 U.S. census may have taken several 
months, it is understood as a snapshot of the U.S. population as of 
April 1, 2000. For that moment in time, a given aggregation unit 
(e.g., a state or county) can be conceptualized as a locus in 
attribute space and therefore visualized as a zero-dimensional, 
point feature in a spatialization. Different moments in time would 
lead to different loci. Given the continuous nature of temporal 
change typical for most census variables (certainly at the 
aggregation levels at which census data are handled by most 
users) and the natural order of time, different loci for the same 
unit can be linked to form a trajectory. In a visualization, the most 
natural representation of that trajectory would be through a 
directed, non-branching graph. 

One particularly interesting aspect of trajectory visualization is 
how it can graphically spell out multi-temporal relationships 
among geographic objects that were previously hard to visualize. 
For example when one says that two counties exhibit parallel 
patterns of development, this would assume somewhat similar 
(though not identical) loci at the same moments in time, which 
over multiple time periods leads to parallel trajectories. On the 
other hand, diverging development will correspond to trajectories 
that start with early loci in relative proximity, but later loci that 
are far apart. When individual loci or whole trajectories are then 
linked to policy decisions (e.g., tax laws or welfare regulations), 
then relationships between trajectories and specific socio-
economic developments may become expressed quite explicitly. 

4. AN EXPERIMENT WITH 
DEMOGRAPHIC DATA 

4.1 Source Data 
The demographic data set utilized in this experiment includes all 
of Texas’ 254 county units with 34 sample socio-economic 
attributes collected from the U.S. Census Bureau’s data archives 
for the periods 1980, 1990, and 2000. Longitudinal analysis of 
census data can be problematic due to the evolving nature of data 
definitions, classifications, and collection methods employed by 
the Census Bureau. For example, there had been significant 
changes in the way ethnic/racial categories have been collected 
and catalogued with every decennial census.  With this concern in 
mind, we included 34 attributes for which we were reasonably 
convinced of dealing with directly comparable categories. These 
include attributes related mostly to race, housing, and journey-to-
work issues. All 762 observations (254 counties x 3 temporal 
samples) for each variable were normalized to a 0-1 range.  

 
Figure 2. Polygon Geometry for a 100-by-100 Neuron  

Self-Organizing Map. 

 
Figure 3. SOM Component Layers Visualized After Interpolation in GIS. 



4.2 Neural Network Training 
SOM_PAK, a freely available software package 
(http://www.cis.hut.fi/research/som_pak/), was used for SOM 
training. A neuron lattice consisting of 10,000 neurons (100x100) 
arranged in a hexagonal neighborhood was trained over the course 
of 1,000,000 runs. This took 143 minutes (wall clock time) on a 
1.3 GHz Pentium III PC. Following training, SOM_PAK 
determined which of the 10,000 neurons best matched each of the 
762 observations. 

4.3 Transformation and Visualization 
Since SOM_PAK provides only rudimentary visualization 
capabilities, all further processing and visualization was done 
using COTS GIS (i.e., ESRI ArcGIS). Some additional software 
components were written, e.g., to create polygon geometry for 
10,000 neurons arranged in a hexagonal pattern (Figure 2). 

After neural network training, every one of these neurons is 
associated with an n-dimensional vector (n=34). In order to help 

with the interpretation of trajectories, individual component 
planes (i.e., variables) were visualized in GIS. In standard SOM 
visualization this has traditionally been done through coloring of 
individual neurons. Instead, we used GIS software to interpolate a 
surface representation from the 10,000 neuron centroids for each 
of the n input variables. Some of these are shown in Figure 3. 
Lighter shading corresponds to higher values, darker shading to 
lower values for a particular variable.  

This visualization of individual variables already allows the 
detection of certain regions in the SOM. For example, densely 
populated, urbanized areas are concentrated in the upper left 
corner, while high percentages of rural populations are mostly 
found in the lower right quarter of the SOM. Some of the 
relationships between variables also become clear. The 
relationship between population density and areas classified as 
urbanized is expected. A bit more intriguing are simultaneous 
peaks for the number of rooms per housing unit and extended 
journey-to-work times.  

With 10,000 available neurons, the matching of observations 

 
Figure 4. Mapping of 762 County Records onto SOM. 

 

 
Figure 5. Time-Stamped Overlay of 762 County Locations with Clustering of SOM Neurons. 



against neurons leads to unique two-dimensional coordinate 
locations for almost all of the 762 input observations (Figure 4). 
Even with a less advantageous neuron-to-observation ratio, one 
could still assign unique coordinate pairs, by randomly placing 
them inside the matching neuron [14]. 

Once unique coordinate pairs are extracted for each observation, 
one simple form of investigating temporal patterns in attribute 
space would be to visualize the year corresponding to each 
location. Clustering of neurons further helps to reveal certain 
patterns in the data. What is shown here (top right portion of 
Figure 5) is the result of a cluster analysis of the 10,000 SOM 
neurons. By training a 5x5 neuron SOM with the 10,000 n-
dimensional vectors (n=34), a 25-cluster solution is derived. 
When looking at the result (bottom of Figure 5), it seems that 
certain portions of attribute space were “abandoned” during the 
1980’s (i.e., the time between the 1980 and 1990 census), as 
indicated by the lack of any post-1980 observations in some 
center clusters. Contrary to this, other clusters contain plenty of 
observations from all time periods, indicating a more stable 
situation, with respect to the 34 input variables included in this 
experiment. An example is the cluster in the bottom right corner, 
for which a look at the component planes (Figure 3) indicates a 
very rural situation, with a large proportion of white population. 
Also noticeable is the appearance of within-cluster temporal 
changes, as smaller, relatively compact observations from the 
1980 census are often clearly separate from the other two census 
periods, e.g., in the lower right corner. 

While one could take the interpretation of these results quite far, 
much would remain too speculative, if one does not also know the 
specific paths taken by individual counties and groups of counties. 
This is what the trajectory approach proposed here hopes to 
achieve. At the individual county level, the 762 observations are 
transformed into 254 trajectories. These can be readily assembled 

and overlaid using standard GIS software (Figure 6). 

A wide range of investigative approaches could be envisioned to 
perform further analysis using these trajectories in conjunction 
with all the other layers already discussed. For example, whole 
trajectories (instead of observations stemming from individual 
time slices) could be clustered in high-dimensional space and 
projected back onto the base map for further investigation. We 
computed a nine-cluster solution for the n-dimensional 
observations of all 254 counties (n = 102 = 34 variables x 3 time 
samples) and mapped one of the resulting clusters onto the base 
map of 254 trajectories. This was then overlaid on selected 
component planes to check for possible explanation of the 
observed trajectory clusters. Figure 7 shows an example in which 
the chosen trajectory cluster is characterized by a drive towards 
the lower left corner. Notice the dense group of trajectories 
aiming for that corner. In the Hispanic component plane, this 
corner contains a dominant peak. Therefore, the tremendous 
increase in the Hispanic population appears to be the dominant 
theme of the counties that make up this cluster. Concurrent with 
this is a reduction of the white population percentage and, at least 
for a large portion of cluster members, an increase in the number 
of mobile homes and a decreasing percentage of people walking 
to work. 

This example should make it more clear that the visualization 
methods illustrated in this paper will serve their ultimate purpose 
not in the context of traditional GIS-based visualizations that 
focus on creation of the “single optimal 2D map” [9]. Figure 7 
and its interpretation were arrived at as the result of exploratory 
combination of various input data and intermediate results. 
Indeed, trajectory visualization should be understood as one 
element in a growing list of knowledge discovery tools that will 
ultimately be part of highly interactive, exploratory, geographic 
visualization environments. While confirmatory analysis will still 

 
Figure 6.  County Trajectories through Attribute Space Over Time. 

 



be mostly done using more traditional, statistical methods, tools 
like these will increasingly allow to discover and explain relevant 
patterns in a database. 

With respect to cognitive plausibility, the proposed trajectory 
visualization produces a number of interesting examples. This 
includes cases of apparent parallel, convergent, or divergent 
development (Figure 8). The right half of figure 8 includes a 
particularly poignant case, in which two counties (Mills and 
Martin) start out at different places in 1980, converge (i.e., are 
similar enough to become associated with the same neuron) in 
1990, but then move in opposite directions by 2000.  

Mapping of administrative units in attribute space may be 
especially attractive, if it is linked to other information related to 
demographic factors. Electoral behavior is one aspect of particular 
interest to many policy-makers. To check for possible patterns, 
we linked county trajectories to results from the six presidential 
elections held between 1980 and 2000 (Figure 9). Three classes 
were distinguished: (a) counties in which the majority voted for 
the Democratic candidate in at least five out of six elections; (b) 
counties in which no solid tendency of majority support for either 
party was observed; and (c) counties in which the Republican 
candidate received the most votes in at least five out of six 
elections. Notice how solid support for candidates of the 
Democratic Party is almost exclusively found in a bundle of 
trajectories heading straight for the lower left corner, i.e. the 
counties characterized by a tremendous increase in the Hispanic 
population. Again, visualizations like these could provide a rich 
ground for discovering interesting patterns, even when dealing 
with such a limited set of variables. 

5. CONCLUSIONS 
For the purposes of this study, the chosen collection of 34 
variables was sufficient for demonstrating the trajectory mapping 
technique. In an application setting, much closer examination of 
the chosen variables should take place. The self-organizing map 
can deal with a much greater number of variables, as 
demonstrated by its use for text visualization, where it is common 
to operate with several hundred variables. Similarly, the method 
appears promising to be used for investigations involving very 
large numbers of attributes dealing not only with socio-economic, 
but also environmental aspects. Detailed multi-temporal data sets 
to support this have only recently become available and should 
provide fertile fuel for future work.  

Such future research must include a consideration of how stable 
the visually suggested relationships between trajectories really 
are. For example, cases of convergence and divergence (see 
Figure 8) may be quite sensitive to small changes in the 
population structure, especially in thinly populated, rural regions. 

In the light of our goal of creating cognitively plausible 
visualizations, the length of trajectories is a particularly difficult 
issue. One major reason for the success of the SOM method in 
dimensionality reduction is that it freely contracts or expands 
feature space portions, depending on neighborhood relationships 
among the training data. As a result, the length of trajectories can 
be quite distorted and absolute comparison of path lengths is ill 
advised. SOMs also tend to exhibit compression of feature space 
along its edges.  

With respect to the role of GIS, this paper demonstrated that the 
two-dimensional layout of the traditional SOM lends itself well to 

 
Figure 7. Highlighting of One Cluster from a Nine-Cluster Solution of County Trajectories. 



representation using geospatial tools and methods, e.g., 
interpolation. Integration remains a difficult issue. The 
experiments described here rely on loose coupling of SOM and 
GIS components. Despite this, the potential utility of the method 
toward enhancing our knowledge of the temporal nature of census 
data is well represented in this rudimentary analysis. Closer 
integration promises to further enable our use of the mapping of 
attribute space trajectories, particularly as they relate to our 
understanding of population dynamics.  
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