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Geographic features have traditionally been visualized with fairly high amount of

geometric detail, while relationships among these features in attribute space have been

represented at a much coarser resolution. This limits our ability to understand complex

high-dimensional relationships and structures existing in attribute space. In this paper,

we present an alternative approach aimed at creating a high-resolution representation

of geographic features with the help of a self-organizing map (SOM) consisting of

a large number of neurons. In a proof-of-concept implementation, we spatialize

200,000þ U.S. Census block groups using a SOM consisting of 250,000 neurons. The

geographic attributes considered in this study reflect a more holistic representation of

geographic reality than in previous studies. The study includes 69 attributes regarding

population statistics, land use/land cover, climate, geology, topography, and soils. This

diversity of attributes is informed by our desire to build a comprehensive two-

dimensional base map of n-dimensional geographic space. The paper discusses how

standard GIS methods and neural network processing are combined towards the

creation of an alternative map of the United States.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Visualization has been recognized as a powerful strat-
egy for understanding complex phenomena that are
reflected in the multifaceted databases collected in all
areas of contemporary society. The role of geographic
visualization has typically been restricted to presenting
geographic phenomena in terms of their geographic loca-
tion, with geographic space acting as the dominant
integrator of disparate data sources from the physical
and human domains. One of the main reasons for the
conceptual and visual richness of such depictions is the
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relatively high resolution of the geographic reference
base, as compared to the relatively low resolution of the
non-spatial attributes. This allows making inferences
about low-dimensional attribute relationships in geo-
graphic space, but one learns relatively little about com-
plex high-dimensional relationships and structures
existing in attribute space. In this paper, we present an
alternative approach aimed at creating a high-resolution
self-organizing map (SOM), whose geometry is con-
structed from the attributes of a large number of geo-
graphic objects. Specifically, we spatialize 200,000þ U.S.
Census block groups using a SOM consisting of 250,000
neurons. In addition, the attributes included represent a
more holistic representation of geographic reality than in
previous studies. Included are 69 attributes regarding
population statistics, land use/land cover, climate, geol-
ogy, topography, and soils. The diversity of this set of
attributes is informed by our desire to build a compre-
hensive two-dimensional base map of n-dimensional
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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geographic space. The paper discusses how standard GIS
methods and neural network processing are combined
towards the creation of an alternative map of the United
States.

2. Towards high-resolution representations of
geographic attribute space

Geographic space has long been represented with very
high geometric resolution, with a large number of point
objects being distinguished even within a small mapped
area and individual line and polygon objects being repre-
sented with dozens or even hundreds of vertices. Com-
pared to that, geographic attribute space – the space
within which geographic objects can be located by virtue
of their descriptive attributes – has traditionally been
represented in a much coarser form. For example, con-
sider how many SOM applications limit themselves to
using the method as a clustering technique, with each
neuron serving as a cluster. Alternatively, as the number
of neurons increases relative to the number of input
vectors, the method starts to function more as a spatial

layout technique and an alternative to such traditional
methods as multidimensional scaling (MDS) and principal
component analysis (PCA) [1].

Pushing further in that direction, the notion of SOM as
possibly a true equal to traditional geographic maps was
initially put forth in Ref. [2], where the (x, y) coordinates
of 14,489 geographic locations were used to train a SOM
consisting of 125,000 neurons, leading to an odd new type
of world map. Skupin and Esperbé [3] then introduced the
use of the SOM method to represent a large number of
geographic features in attribute space at high granularity,
such that finer distinctions among several hundred thou-
sand geographic objects can be visualized. While the
experiment reported in Ref. [3] used exclusively climate
attributes and another focused on population census
attributes [4], the current paper builds on and extends
that work, towards a more encompassing set of geo-
graphic attributes.

3. Creating a holistic high-resolution SOM of geographic
features

Representations of geographic phenomena typically
focus on a limited number of attributes. Often a single
attribute is involved, such as in maps of population
density or average household income. Meanwhile, when
multivariate representations are generated, they tend to
focus on particular attribute domains, with examples
including crime statistics [5], population census data [6],
or medical data [7]. There are of course very good reasons
for such thematically driven approaches, including the
presumed coherence of spatial and temporal resolution
of the source data and consistent processing techniques.
The more varied the source data, the harder it will be to
achieve a useful level of integration, especially when large
data sets with hundreds of thousands of entities are
involved.

In addition, exploration tends to be driven by ques-
tions emanating from a particular application domain,
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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including plenty of a priori knowledge regarding the
possible relevance of particular attributes. That drives
the choices made when data from different domains are
brought together, such as when mortality causes and risk
factors are combined in a medical visualization [8].

Moving further along this spectrum from single-
attribute data towards multi-attribute, single domain
data, and then multivariate, multi-domain data, we even-
tually arrive at situations where many attributes from
quite different thematic domains are to be integrated
without imposing particular a priori constraints. That is
where our study is situated. The goal is to generate
computational support for implementation of complex
application scenarios, along the lines of what was laid out
in Ref. [9]. Earlier experiments in the creation of high-
resolution SOM from geographic data had included attri-
butes from single domains, specifically population census
data [4] and climate data [3]. Now, we are increasing
the number of attributes, but, more importantly, we are
widening the number of domains from which these
attributes originate and in which they have typically been
utilized. With a particular view of déj�a vu type scenarios
[9], attributes are included that may contribute to one’s
sense of place. Attributes are considered in terms of their
potential relationship to the sensory experience of a place,
i.e., its smells, sights, sounds, and broad physiological
impact. The temperature and humidity profile of a place
can cause certain places to be experienced in similar ways
(e.g., New Orleans is more similar to Miami than to
Phoenix in this respect), while similar patterns in popula-
tion variables may generate different patterns of experi-
ential similarity (e.g., suburban areas may share a lot of
attributes, even if they are in different areas of the
country). Now imagine if temperature, humidity, and
population attributes were considered simultaneously,
both in terms of how we conceptualize the experience
of place and in the actual computational model.

We refer to ours as a holistic model, not only due to the
unusual variety of attributes involved, but also because
we stay away from such notions as dependent/indepen-
dent variables. Note that the data generated could actu-
ally be input to more traditional methods of statistical
geographic inference (since we attach all attributes to the
same set of geographic features), but in our study they
enter the neural network training and visualization pro-
cess without such consideration.

3.1. Data sources

With the goal of a holistic model in mind, the study
casts a fairly broad, inclusive net.

A number of factors influenced the specific choices
made among possible attributes. First, the aim is to cover
a large geographic extent, namely all of the contiguous
United States. Second, in order to claim relevance with
respect to the personal experience of place, the data must
be available at a fairly fine spatial resolution. For example,
aggregation at the level of counties would be insufficient,
given the internal heterogeneity of counties. Source data
would thus have to be available at fairly detailed resolu-
tion and for the whole country. Six different attribute
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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Table 1
Diversity of data sources from which 69 attributes were derived for

200,000þ U.S. Census block groups.

Type Source n
attributes

Climate National Climatic Data Center (NCDC) 8

Topography U.S. Geological Survey (USGS) 2

Soil State Soil Geographic Database

(STATSGO)

3

Geology USGS 10

Land use/cover USGS 16

Population U.S. Census Bureau 30
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domains were eventually identified and were prepro-
cessed to yield 69 attributes (Table 1).

3.2. Generation of geographically integrated data

While source data were chosen for their potential of
representing all of the contiguous U.S. at fine geographic
resolution, a fair amount of preprocessing is required in
order to generate a coherently integrated data set. Inte-
gration here refers to the ability of attaching values for all
attributes to a single set of geographic features, so that
those features are then amenable to similarity-based
computation.

In most cases, the source data already contain the
relevant attributes, in other cases some additional attri-
butes are derived, such as when the elevation data set is
used to generate a slope data set, thus yielding two
topographic attributes. Preprocessing also includes stan-
dardization of population attributes, such as when all age
variables of a block group are divided by its total popula-
tion and all housing variables are divided by the total
number of housing units.

Geographic integration is far more challenging, espe-
cially since we are simultaneously dealing with high
resolution and a large geographic extent. Crucial choices
have to made regarding the uniformity and granularity of
the geographic features at which the various attributes
should come together. Instinct might suggest a tessella-
tion of the study area into uniform geographic units. That
raises the question of whether such uniformity matches
the source data. The geographic variation of some attri-
butes, like climate, may be such that integrating those
attributes within cells of a uniform size makes sense.
However, other source data, notably those related to
human population, may exhibit huge variation in the
granularity of geographic patterns. For example, cities
will exhibit large variation among population attributes
within relatively small areas, as compared to rural
regions. Meaningful aggregation of population attributes
into uniform cells would thus require using a fairly small
cell size. However, this would on one hand lead to an
extraordinarily large data set (considering the size of the
contiguous U.S.), and may on the other hand not be
necessary for the large areas of the country that are either
rural or generally sparsely populated. A non-uniform
tessellation of geographic space that reflects variations
in the geographic granularity of human phenomena may
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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be more useful. It turns out that several U.S. Census
products provide exactly such tessellations, with polygon
features, whose size is influenced by population density.
Of these, the finest geographic granularity is provided by
the block group tessellation (note: blocks represent a finer
granularity but are typically represented as point features,
not polygon features). Considering further that population
census attributes are already available for each block
group, the study uses the over 200,000 block groups in
the contiguous U.S. as the geographic unit at which all
other attributes are integrated as well.

In addition to the existing 30 population attributes, the
value for each of the additional attributes has to be
determined for each block group. Given that geometric
structures of those additional attributes will intersect
with block group boundaries, i.e., block groups are hetero-
geneous with respect to those attributes, our approach
amounts to the computation of zonal averages, with block
groups acting as zones. For example, the average elevation
encountered within a block group would become its
elevation value. In the case of qualitative attributes, like
land use/cover, the area proportion of different classes is
computed for each block group, thus leading to as many
attributes as there are unique classes.

In practical terms, this process of geographic integra-
tion proves to be quite challenging, due to the variety of
data sources (e.g., mix of vector and raster data) and the
wide range of block group sizes and the sheer size of the
study area. For example, at a raster resolution of 1 km,
the contiguous U.S. would become represented by roughly
8 million cells. That makes zonal computations on
200,000þ blockgroups unfeasible. After extensive experi-
mentation, this study settled on a resolution of 5 km for
all raster sources, which results in cells that are smaller
than the average block group size. At that resolution,
computation of zonal averages took around 17.5 h per
variable. For comparison, at 4 km input resolution the
same computation was estimated to take around 30 h per
variable. Intersection of vector-type sources with block
group polygons is likewise challenging, and was here
addressed through processing of individual states, which
took between 30 min and 2.5 h per state. With values for
all 69 attributes now attached to 206,557 census block
groups, the last preprocessing step is to perform normal-
ization of attributes, in this case to a 0–1 range for each
attribute.

3.3. Training the neural network

There is a dearth of literature prescribing suitable
parameters for SOM creation and training. It is clear that
the few existing empirical prescriptions did not have in
mind a high-resolution SOM consisting of several hundred
thousand neurons. For example, Kohonen’s [10] rule-of-
thumb of using around 500 training runs per neuron
would be completely unfeasible for such high-resolution
SOM, unless a dedicated neural hardware was deployed.
In order to better understand the implications of various
parameters – including network size and training length –
a series of experiments is performed that use the climate
portion of the data set (8 attributes). This is largely
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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Fig. 1. Two-stage training of a high-resolution SOM with 8 climate attributes for Census block groups; snapshots evaluated through the QError measure.

Second stage begins after 60,000 initial runs, for a total of up to 2,060,000 runs.
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informed by the initial experiments described by Skupin
and Esperbé [3], which had also involved climate data.

In terms of network size, it was ultimately decided to
proceed with a network in which – at least statistically
speaking – every input vector would have a chance of
occupying its own neuron. That is the case with 250,000
neurons (500�500). In choosing such a large number,
note the goal of developing detailed structures among
individual input vectors, as opposed to the use of neurons
as clusters per se.

As for the length of training, it has generally been
suggested [10,11] to perform training in two stages,
whereby the first stage would establish broad, global
structures and the second stage would firm up regional
and local structures in the SOM. Given the size of the
input data set and, more importantly, the unusually large
number of neurons, an experiment is performed in which
the total number of runs – an input parameter to SOM
training – is gradually increased during repeated, inde-
pendent training trials. The resulting SOMs are then
analyzed in terms of a numerical measure of training
quality, the quantization error (QError; Fig. 1). One of the
key questions we ask concerns the specific difference
between the single-stage and two-stage approaches.
What is the effect of adding a second training stage and
at which point should that stage begin? Fig. 1 illustrates
that extended training cycles for a single training stage
(‘‘ph1’’) would indeed not yield as much of a reduction in
the QError as what can be observed during a second stage
(‘‘ph2’’). While the QError initially drops steeply in
response to longer training during the first phase, that
drop starts to level off after around 60,000 runs. With the
SOM generated at that point taken as input to the second
training stage, the QError then drops again precipitously
before slowly leveling out. Once that occurs, one can
observe that the QError during the second stage is less
than half compared to the first stage, after a comparable
number of total runs.
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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The QError is a highly aggregated measure of training
performance, summarizing in a single number how well
the �207,000 block groups are matched to the 250,000
neurons. Alternatively, one may want to visually explore
the training process such that the emergence of patterns
over the course of multiple runs becomes clearer. To that
end, we introduce three alternative visualizations of the
21 SOMs previously summarized with the QError. Each is
meant to illustrate training effects through clustering that
is either computed from the SOM itself (Fig. 2, top and
middle) or computed from the input vectors and pro-
jected onto the SOM (Fig. 2, bottom). Note that the first-
stage SOMs were trained completely independently,
which is why one would expect rotation/reflection effects.
For example, notice the similarity between the 500k and
1000k solutions, with apparent reflection along the y-axis.
Meanwhile, the second stage SOMs are likewise com-
puted independently, but based on the same 60k solution
of phase 1.

First, there is a series of U-Matrix visualizations [12]
(Fig. 2, top), where darker shading corresponds to neigh-
boring neurons being more dissimilar. Here one observes a
progressive sharpening of similarity patterns. With more
input block groups claiming neurons for themselves
instead of being crowded with somewhat dissimilar block
groups, less neurons are available to express the border
regions in the similarity landscape.

While U-Matrices are based on a strictly local opera-
tion – only similarities between neighboring neurons in
the 2D neuron lattice are examined – one could instead
compute clusters from neuron vectors in the high-dimen-
sional attribute space and then project those clusters into
the 2D SOM space. Keep in mind that, in a low-resolution
SOM, neurons effectively act as clusters, e.g., a 3�3
neuron lattice would generate 9 clusters [1], which would
aim for similar compactness – in the high-dimensional
space – as the k-means clustering method. Given the
overall principles of similarity-based self-organization
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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Fig. 2. Two-stage training of a high-resolution SOM with 8 climate attributes for Census block groups; snapshots evaluated through the U-matrix method (top),

k-means clustering of neurons (middle), and k-means clustering of geographic feature vectors projected onto the SOM (bottom). Note ongoing refinement of

cluster structures.
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embodied by the SOM, one would expect that k-means
clustering of neurons from a high-resolution SOM would
likewise result in fairly compact structures. Prior to
training, the SOM is initialized with random values for
all neuron vectors. After only 1875 runs the neurons are
already clustered very coherently (Fig. 2, middle). Early
on, the training roughly arranges the neurons quite
regularly across the n-dimensional space, as indicated
by what looks like Voronoi regions in the 2D space. Later,
one observes the emergence of regions of varying size,
reflecting density variations in the input space, and finally
the boundaries of clusters get more and more refined, in
response to detailed adjustments of neuron weights.

Finally, a single k-means clustering solution (k¼25)
is computed for the �207,000 block groups in the
8-dimensional climate space. Since each block group has
a corresponding location in the 2D space, their cluster
membership can be the basis of generating 2D represen-
tations, effectively projecting the same cluster solution
into the 2D SOM space for each of the 21 SOMs (Fig. 2,
bottom). This approach allows direct visual comparison of
different training results in relation to structures in the n-
dimensional input space, in contrast to the more implicit,
2D-bound computation provided by the U-matrices
(Fig. 2, top) and the harder to compare – due to indepen-
dent computation – clustering of neurons (Fig. 2, middle).
Given that all �207,000 input vectors are used to com-
pute the clustering solution, it is surprising how quickly
broad, coherent structures emerge even when only 1875
out of those input vectors were used (note that each run
uses one input vector). What follows are first the
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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emergence of Voronoi-like regions and then an increas-
ingly detailed definition of cluster boundaries in the 2D
space. On looking at this progression, one notices that
longer runs seem to result in clusters that are better
connected. This points to possibly another numerical
measure of SOM quality, beyond the quantization error.
If we assume that (a) k-means clusters describe compact
structures in the high-dimensional input space and that
(b) SOM training aims to preserve topological structures
of that same space, then we should expect that (c)
successful SOM training should ideally result in k clusters
of the input vectors being represented as k connected
regions. While some of those assumptions may be unrea-
listic for complex high-dimensional spaces that are repre-
sented by a high-resolution SOM, we should at least
expect that the number of 2D regions into which k high-
dimensional clusters are split significantly declines during
training. In fact, while the 25 clusters become represented
in 19,192 regions after 1875 runs, that is reduced to 3202
regions with 60,000 runs, reaches 671 regions after 1
million runs in the second stage, and ends at 440 regions
after the full two-stage training.

Given the observed continued sharpening and refine-
ment of similarity structures (Fig. 2), it certainly seems
that multi-stage training and a large number of training
runs at the second stage are a reasonable strategy. Given
the size of the data set and the number of neurons
involved, one could argue for even longer training cycles,
with the degree of convergence towards k regions as a
possibly more meaningful quantitative measure than the
quantization error. However, that conflicts with the sheer
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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computational power required, since, in the case of using
just climate data, it already took more than 77 h to
perform two million training runs (single-processor,
2.3 GHz Xeon CPU).

Based on the lessons learned in this experiment, the
full data set of 206,557 block groups and 69 attributes
was trained for 60,000 runs during the first stage and
another 2 million runs in the second stage for a total
training time of more than 6.5 days (dual-processor,
2.33 GHz Xeon CPU).
4. Alternative map of the United States

With training completed, every one of 250,000 neu-
rons in the SOM has a vector associated with it containing
individual weights for each of 69 variables. Since neurons
are arranged in a two-dimensional lattice within which
neighboring neurons tend to represent similar regions in
the high-dimensional space, one can now perform a
number of transformations of the 2D lattice aimed at
visualizing attribute space. Furthermore, given the large
number of neurons, such visualizations amount to a more
detailed attribute space mapping of the contiguous U.S.
than had previously been attempted.

Visualizations based on a SOM typically fall into three
categories [1]:
(1)
Fig.
attri

Pl
m

visualization of the SOM itself,

(2)
 mapping of n-dimensional vectors onto the SOM, and

(3)
 linking of SOM with other display spaces.
3. Component planes of a high-resolution SOM (500�500 neurons) traine

butes.
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The remainder of this paper illustrates the application
of all three to the holistic SOM of U.S. Census block

groups.

4.1. Visualizing the neuron lattice

Frequently, the purpose of a SOM-based visualization
is the examination of n-dimensional structures, as
reflected in the distribution of attribute weights across
the neuron lattice, without consideration of other data,
including the original input vectors. Among the most
common approaches is the display of individual compo-
nent planes, where the neuron weights of individual
attributes are symbolized, one attribute at a time. One
could think of this as discrete layers that all are refer-
enced to the same 2D coordinate system and can thus be
visually compared. Incidentally, this layering lends itself
in very practical terms to be processed in standard GIS
software.

One typically uses the side-by-side display of compo-
nent planes (Fig. 3) to develop ideas about possible
correlations between variables, at a fairly broad scale.
With a high-resolution SOM, more intricate visual inves-
tigation is possible. For a detailed example, examine the
bottom left quarter of the SOM, with particular considera-
tion of the following variables: agricultural land use,
forestland, slope angle, white population, and vacant
housing. Based on just these few variables, one can paint
a plausible picture of the evolution of the block groups
whose 69-dimensional vectors shaped this portion of the
SOM. Notice how the region with high values for the
forest variable seems to fit neatly into the gap within high
d with climate, topography, soil, geology, land use/cover, and population

e map of the United States based on an n-dimensional
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values for agricultural land (see Fig. 3, third row). In
addition, there is significant ‘‘feathering’’ where the two
categories overlap, with high values for one category
corresponding to intermediate values for the other cate-
gory. It is clear then that there is a close relationship
between them. If we further consider typical temporal
patterns of land use conversion, then it is safe to conclude
that this is a region that was originally dominated by
forest cover, but was subsequently converted to agricul-
tural land. Much of the remaining forestland likely
escaped agricultural conversion due to steepness of slopes
(see slope component in first row). Meanwhile, non-white
population is largely absent from this part of the SOM
space, likely a reflection of the settlement history. Finally,
the forested, steeper portions of this region have among
the highest proportions of housing units recorded as
vacant, likely a reflection of a large number of vacation/
seasonal homes being located here.

While the connectedness of the neuron lattice as well
as the visual impression of many component planes
convey a sense of the continuity of the n-dimensional
input space, the SOM method is only able to bridge the
large dimensional gap to the 2D space by exploiting
relative discontinuities in the input space. Specifically,
SOM training accentuates density variations, such that
high-density regions are expanded (i.e., represented by
more neurons) and low-density regions are contracted
(i.e., represented by few neurons). This effect becomes
more pronounced during later training runs, as indicated
by a sharpening contrast in the U-matrix (Fig. 2, top).

4.2. Mapping n-dimensional block group vectors and

neuron clusters onto the neural lattice

One can visualize density effects more explicitly by
mapping the input vectors onto the finished SOM. For
every one of the 200,000þ block group vectors one
Fig. 4. Landscape visualization expressing the density of block groups in S

Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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determines the most similar neuron vector out of
250,000 neurons. Since every neuron occupies a location
in the 2D SOM space, one can thus determine a 2D
location for every block group. Based on the 2D locations
of block groups a density landscape can be derived (Fig. 4)
in which lower elevation (blue tones) indicate lower
density in the 2D space.

Knowing about the density-preserving effects of self-
organization in SOM training, one would expect that
those low-density areas correspond to pronounced gaps
in the high-dimensional space. These might well emerge
as cluster boundaries by standard clustering methods, as
opposed to the more implicit depiction in this density
map as well as in the U-matrices. For example, one could
overlay k-means clustering (k¼25) of neuron vectors onto
the density landscape (Fig. 4). Notice how many of the
cluster boundaries trace low-density regions, confirming
that those indeed are significant gaps in the input space.
Some valleys are not traced by cluster boundaries, but
would likely do so with higher values of k. Meanwhile,
some cluster boundaries cut through areas without sig-
nificant density variation, especially along the left side of
the SOM. These are areas with continuous transition in
attribute space and – as will be shown later – geographic
space. In other words, these are areas of elevated spatial
autocorrelation.

There are of course other candidate clustering meth-
ods one could employ. Some of these typically operate
in high-dimensional space (e.g., hierarchical clustering),
while others specifically attempt to generate contiguous
low-dimensional clusters. Skupin [13] demonstrates
how the choice of clustering methods is intricately
linked to the specific goals and conditions of the
visualization. For example, the nested structure gener-
ated with hierarchical clustering lends itself to support-
ing a cognitively plausible multi-scale interface to a
high-resolution SOM. Meanwhile, k-means clustering
OM space and outlines of a k-means clustering of neurons (k¼25).

e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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generates solutions that, for a particular granularity, are
of better quality than hierarchical clustering. However,
the lack of coordination across the solutions for different

granularities makes meaningful zooming more difficult,
not to mention that it impedes the cognitively useful
simultaneous display of multiple granularities [13].
Some methods do not require specifying the number
of clusters as an input parameter, such as the neuron
label clustering method [13], but that actually makes
precise zoom control more difficult in an interactive
environment. There also are methods that solely rely on
detecting clusters in the two-dimensional space of the
neuron lattice (e.g., U-matrix). The ability of a clustering
method to generate meaningful, comparable solutions
Fig. 5. k-means clustering of n-dimensional neuron vectors projected into S

gray labels.
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for different input data (e.g., neuron vectors and block
group vectors) was another concern. Given further the
natural affinity between SOM and k-means representa-
tions – with their tendency of producing compact,
convex clusters – k-means was used throughout this
study. Though the specific choice of k may seem arbi-
trary (k¼25), it was informed by a balancing act
between legibility in the available display space and
the drive for a relatively simple, consistent approach.

Keep in mind also that the visualizations presented
here (especially Figs. 5 and 6) are meant as proofs-of-
concept for a new type of systematic juxtaposition of
high-resolution geographic and attribute space depictions
that are ultimately meant to be explored interactively,
OM space and geographic space. Large cluster exclaves indicated with

e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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gray labels.
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including at multiple scales. Insofar, ‘‘clustering serves as
a stepping-stone in the support of visual exploration’’
[13], as opposed to foremost providing optimal feature
space partitions.

4.3. Juxtaposing geographic space and attribute space

There has been a long tradition of side-by-side display
of different visualizations, including linked selection and
symbolization. As far as the linking of SOM and geo-
graphic maps is considered, this goes back to Bin Li’s
pioneering work [14], and there are numerous recent
examples in a variety of application domains [5,15,16].
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
model of geographic space, Journal of Visual Languages and C
As argued earlier, one of the main innovations introduced
in this paper is the idea of generating a SOM that could
serve as a true counterpart to the level of detail found in
geographic maps. In our study, similarity-based links
between high-dimensional vectors of block groups and
neurons, in conjunction with 2D geometry existing for
block groups and neurons, form the basis for the juxta-
position of visualizations in attribute space and geo-
graphic space (Figs. 5 and 6). With block groups having
locations in both spaces, it becomes possible to project
various other computational products into those spaces.

First, the k-means clustering of neurons is projected
into both display spaces (Fig. 5). A key advantage of the
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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SOM method, compared to other techniques, is that it
allows designing a color scheme that reflects major
topological structures of the high-dimensional space. In
conjunction with linked symbolization, this use of SOM
becomes a powerful mechanism for meaningful color
design [1,5]. In our study, colors are manually assigned
to clusters, after these are projected onto the SOM, in
consideration of the patterns encountered in the U-matrix
and density landscape. That color scheme is then propa-
gated to the geographic map.

The second cluster solution projected into both display
spaces is computed from the original block group vectors
(Fig. 6). Although the SOM is here merely receiving cluster
membership information from the block groups, it is still
used for color design, which is then transmitted to the
geographic map. The pattern that emerges in the SOM
space (Fig. 6, top) is more complex than what is observed
in the clustering of neurons (compare Fig. 5, top). That
makes sense, since the process of self-organization has
the effect of generating relatively smooth transitions
among neighboring neurons, as opposed to the more
sharply pronounced differences and idiosyncrasies of
individual block groups. Rapid mixing of cluster member-
ship, as indicated by a mosaic of small polygons, mostly
occurs near cluster boundaries. This can be expected since
those boundary regions tend to correspond to areas of low
density of block groups (see Fig. 4) and low similarity
of neighboring neurons (Fig. 2, top). This is where
n-dimensional space becomes highly compacted, which
makes disambiguation of cluster membership more diffi-
cult for individual block groups that are located near the
edge of a cluster. These border mosaics could likely be
addressed by additional training cycles, given that earlier
experiments – using only the climate data – showed
continued decline in the total number of polygons with
which k block group clusters are represented.

Where clusters are broken into larger, contiguous
pieces, it helps to compare the two cluster solutions
(top of Figs. 5 and 6). Frequently, the two solutions show
agreement in breaking up a high-dimensional cluster in
its 2D depiction. A notable example is a significant chunk
of the bottom-right cluster (numbered ‘‘11’’ in both
Figures) being located along the top edge of the SOM.
The consistency of this split among the two cluster
solutions and the fact that the broken-off chunk does
contain a large number of block groups (see density
landscape in Fig. 4) point to an issue with the trained
SOM itself, possibly related to the well-known edge
problem. Such solutions as toroidal SOM [17] and sphe-
rical SOM [18–20] have been proposed, but they still
require flattening out after training in order to be exam-
ined in a 2D display medium, a process that introduces its
own discontinuities, akin to the separation of Siberia and
Alaska in many world maps.

In comparing the two cluster visualizations, we can also
see that coherently organized regions in the neuron lattice
are sometimes split into different numbers of clusters. For
example, the region in the lower left of the SOM, which was
earlier discussed in terms of the component planes, is very
well represented in both cluster solutions, but with different
granularity. While the block group based cluster solution
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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(Fig. 6) has the whole region organized as one cluster (‘‘19’’),
neuron-based clustering has (Fig. 5) this broken into four
clusters (‘‘2’’, ‘‘3’’, ‘‘5’’, ‘‘15’’). Since the same number of total
clusters is generated in both solutions, it does not surprise
that at other times the relationship is reversed, as when
cluster ‘‘6’’ in the neuron-based solution is broken into
clusters numbers ‘‘12’’, ‘‘13’’, and ‘‘15’’ in the block group
based counterpart. The relative coherence with which pieces
thus fit together points to an increase in k as possible
strategy.

With geographic features establishing a relationship
between attribute space and geographic space via multi-
variate attributes, one could project aggregate features
from the latter into the former. This has previously been
demonstrated for line features aggregated from point
features, such as when space-time paths (STP) captured
with GPS are transformed into spatialized attribute-time
paths (SATP) [4]. A high-resolution SOM, with its more
detailed 2D layout of large numbers of geographic
features, makes it even possible to spatialize polygon
features. As a special case, polygons were projected onto
a SOM solely based on geographic coordinates in Ref. [2].
Meanwhile, Ref. [3] demonstrated the first example for
the projection of aggregate polygon features into a SOM
space via the multivariate attributes of component fea-
tures, in a study that used only climate attributes. With
climate varying smoothly across geographic space, states
became represented as relatively contiguous polygons in
SOM space.

In the present study that is quite different (Fig. 7). In
2D SOM space, all states become fragmented to such a
degree that labeling of regions in attribute space becomes
unfeasible and chorochromatic mapping is left as the only
feasible method to convey a sense of the distribution of
states. This indicates that multivariate attribute space
varies tremendously in its expression across geographic
space. More formally this is known as spatial heterogeneity

[21], which Goodchild [22] argues to be a ‘‘first-order
effect’’ of geographic places, with spatial dependence – also
known as the ‘‘first law of geography’’ [23] – being a
second-order effect.

4.4. Holistic regionalization

When the n-dimensional regions of geographic fea-
tures are projected into geographic space (see bottom of
Figs. 5 and 6), the result amounts to regionalization in the
more traditional geographic sense of the work, i.e., the
delineation of area units based on a certain level of
attribute homogeneity. Our approach combines aspects
of various common approaches to geographic regionaliza-
tion. Historically, regionalization has typically involved
several variables/dimensions, but limited to a particular
domain and based on extensive input of domain expert
knowledge. Climate classification systems, like those
famously put forth by Köppen or Thornthwaite are prime
examples [24,25]. Meanwhile, vernacular regions, like
‘‘The South’’, are thought to be driven by broadly shared
perceptions [26,27]. Then there are various computational
approaches to regionalization, which have a tendency of
considering a limited number of variables or even just a
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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single variable [28], naturally aimed at very specific
applications. Many of the existing approaches employ
geographic contiguity as a dominant constraint [29] and
are supervised at least in the sense that the number of
classes tends be an input parameter. Our approach cur-
rently does not impose a contiguity constraint in either
SOM space or geographic space. The lack of a contiguity
constraint in geographic space is an implication of our
goal of discovering similarity of places that goes beyond
the effects of spatial autocorrelation, i.e., we would like to
also detect similarity patterns that are not explained by
mere geographic proximity. Geodemographic analysis is
probably the area of recent advances most closely related
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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to our approach, with its use of a relatively large number
of variables, lack of contiguity enforcement, and the major
role played by computational methods [30]. However, our
approach pushes further towards a holistic representation
of geographic attributes, by including a much larger
variety of attributes, including physical and environmen-
tal attributes.

One of the most striking observations in the geo-
graphic regionalization as depicted in the bottom half of
Figs. 5 and 6 is that certain classes visible in the SOM
space seem almost completely absent in geographic
space. Specifically, notice the absence of yellow, olive,
and deep green regions. Those are mostly urban areas,
e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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with high percentages of renter-occupied housing and
land cover classified as urban or residential. Keep in mind
that cities have an overall small geographic footprint, as
compared to the vast stretches of rural areas separating
them. Much of the richness of patterns existing within
urban spaces is thus hidden from view when a ‘‘normal’’
map of the lower 48 states is presented based on block
group data. Rural patterns dominate the map. One would
also expect that attributes with relatively broad patterns
of geographic variation dominate the geographic map.
Those will tend to be attributes describing the physical
environment, such as climate, soils, and geology. The
effects of attributes with variations at finer geographic
scale, notably many of the population and land use
variables, become less apparent when all of the contig-
uous U.S. is viewed in a single geographic map.

In contrast, this is where one of the essential char-
acteristics of SOM training comes to the fore. As was
pointed out earlier, density variations in the input space
have an effect on training, such that high-density areas
are represented with more neurons and low-density areas
are represented with less neurons. In our study, the SOM
acts as a type of area cartogram [2] where regions of
attribute space are scaled roughly in accordance to the
number of block groups they contain. Since there are so
many urban-type block groups, they do receive their fair
share of neurons (Figs. 5 and 6, top half).

One could of course zoom into select regions of the
geographic map, to examine in more detail the degree to
which clustering and SOM-based color choices combine to
shape a coherent picture in geographic space (Figs. 8 and 9).
The first example (Fig. 8) shows a zoomed-in display of a
portion of the city of New Orleans. Note that all of this part
of the city is displayed in a greenish tone, being classified in
Fig. 8. Clustering of block group vectors projected into geograph

Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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clusters 5, 20, and 24, indicating that there are attributes
that unify the experience of place in that city. Tracing the
corresponding regions across the various component planes
(Fig. 3) illustrates that those three clusters have little
variation in terms of physical geography. Indeed, in terms
of temperature and dew point, all of New Orleans feels
equally warm and humid for most of the year and it is well-
known for that. On the other hand, the city is also known
for stark contrasts among its population and the mix of
geographic map and SOM illustrates that. Notice how
cluster 5 wedges itself in between large areas claimed by
cluster 20. One would thus expect that they might be
neighbors in attribute space as well. However, on looking
at the corresponding SOM (Fig. 6), one finds that clusters 5
and 20 are separated by clusters 8, 24, and an exclave of
cluster 2. In other words, the neighborhoods making up
cluster 5 are quite different from those that are represented
by cluster 20. In fact, when one walks along one of the
streets transecting these clusters, going from the Missis-
sippi river northward, one encounters dramatic differences.
The population census portion of the component planes
(Fig. 3) helps us to weave these differences into a coherent
fabric of human geography. First, within the Irish Channel
neighborhood, one will encounter mostly African-Americans,
a much larger proportion of females, and a large propor-
tion of renter-occupied housing. Upon crossing Magazine
Street and entering the Garden District, one is visibly

shifted in attribute space, as one enters an area with
predominantly white population and owner-occupied
housing. Then, as one leaves the Garden District, one once
again encounters a geographic locale with similar attri-
butes as the Irish Channel. Even though such attributes as
family income or number of rooms per housing unit were
not part of the data set, the social history of New Orleans
ic space, focused on a portion of New Orleans, Louisiana.

e map of the United States based on an n-dimensional
omputing (2011), doi:10.1016/j.jvlc.2011.03.004
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is such that the variables that are included – in particular
the race variables – predict the experience of this geo-
graphic space to a surprising degree.

The second example illustrates a less dramatic zoom
into the geographic space, this time at a regional level, for
the area surrounding the city of Chicago (Fig. 9). This is
again based on the clustering of block groups and SOM-
based color design (Figure Fig. 6, top). Notice the consis-
tency of the overall color palette in the geographic
depiction of the region, centered on reddish and orange
tones, but absence of green and blue tones. This is again
due to regionally consistent factors, notably in climate,
soils, and geology. However, the variation that does occur
at a regional scale is here more of a slowly transitional
nature, as compared to the stark contrast exhibited in the
local area of New Orleans shown in Fig. 8. Sign of a slow
transition is the consistency in the order of clusters one
encounters on a radial transect towards the city. The
broader surroundings are dominated by cluster 19, which
covers much of the rural Midwest, Ohio Valley, Upper
Mississippi Valley, areas surrounding Lakes Michigan,
Erie, and Ontario, and extending over much of the state
of Maine (Fig. 6, bottom). As one gets closer to Chicago,
one then traverses cluster 16, then cluster 10, and finally
cluster 21. Turning to the SOM space (Fig. 6, top), this
connected sequence of clusters (19-16-10-21) is perfectly
matched along the left edge. In other words, as one
approaches Chicago, one smoothly transitions through
both geographic and attribute space.

5. Conclusions

This paper introduced a number of innovations, namely
regarding (1) the creation and processing of high-resolution
SOMs, (2) possibilities for linked visualization of large
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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numbers of geographic features in geographic space and
high-resolution attribute space, and (3) the projection of
geographic polygon features into 2D attribute space via the
multivariate attributes of component features. The compu-
tational and visual transformations presented here signify a
novel, alternative, approach to the mapping of geographic
phenomena. This is particularly evident in the very detailed
depiction of attribute space and in the development of a
uniquely holistic regionalization in geographic space.

It was demonstrated that it is possible to aim for finer
levels of detail when visualizing the attribute space of
geographic features and to consider a broader, more
holistic set of attributes than had previously been shown.
With more than 200,000 geographic features and
69 attributes as input, one of the largest SOMs of geo-
graphic features to date was created, consisting of
250,000 neurons. Visualization of the training process
based on quantization error allowed making a more
informed decision process regarding some parameters of
SOM training. Most notably, this confirmed that multiple
training phases are indeed an appropriate strategy and
the switch to a second stage can occur relatively early,
with the QError being useful for determining the point at
which to switch between phases. Given the observed
pattern of the QError dropping early in each phase, we
would speculate that additional training phases might
lead to significant improvements in training quality,
possibly well beyond the typically prescribed two-stage
training procedure.

With training of the SOM taking almost a full week of
processing time on a standard PC platform, there currently
are clear limits to further, more extensive, experimentation
with training parameters. Considering that the SOM_PAK
software [11] used in this study is superior in computational
performance to many common alternatives, such as the
e map of the United States based on an n-dimensional
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SOM Toolbox for Matlab, it seems we are operating at the
limits of what is possible in a PC hardware environment.
Other studies are currently underway aimed at paralleliza-
tion of the SOM algorithm, so that supercomputing
resources could be exploited for SOM training. At that point,
it will become feasible to test training parameters more
comprehensively. Note that the number of n-dimensional
vectors one may want to map onto the finished SOM could
theoretically be extremely large (far beyond the 200,000þ
block groups used here), since such an operation does not
involve comparison of input vectors to each other. Instead,
one simply needs to find the best-matching neuron vector
for each input vector, a task that lends itself well to parallel
computing.

One of the interesting questions to be pursued in
future work is whether a non-planar arrangement of
SOM, such as on a sphere [19,20,31], would lead to an
improvement in quantization error, though the additional
computational complexity of non-planar SOM would
again call for an advanced hardware environment.

The inclusion/exclusion and relative weighing of attri-
butes is another aspect warranting of further investiga-
tion. For example, in hindsight, geology seems to be an
attribute that could be dropped when the experience of
geographic space is a driving consideration. It is interest-
ing though to observe the visual effect in the respective
component planes (Fig. 3), where it becomes clear that a
particular geological class tends to either occupy a block
group completely or does not exist in it at all.

Other attributes may be added of course, as long as
they are available for the whole study area. The latter
point is the single most important limitation in terms of
applying the proposed methodology to other geographic
areas. Ideally, it would be nice to be able to directly
compute in attribute space across the globe, at the
detailed geographic scale demonstrated in this study.
However, the sheer availability of such a wide range of
attributes and the likely ontological mismatches make
such an undertaking extremely challenging.

With explicit computation of clusters such as an
integral element of the linked exploration of geographic
and attribute space (Figs. 5 and 6), the specific clustering
method and parameters deserve further attention.
Different cluster techniques may be applied, depending
on specific application needs. Further investigation
of alternative clustering techniques is complicated by the
inherent tension between cognitive plausibility and
statistical cluster quality, especially when very high-
dimensional spaces are involved. For example, despite
the higher cluster quality generated by methods that
aim at a single, optimized cluster solution, nested hier-
archies (such as those produced by hierarchical cluster-
ing) lend themselves far better to supporting zoomable
interaction. Granularity control – such as required for
zoomable interfaces – is supported to varying degrees by
different methods [13]. If k-means clustering is used,
like in this study, then k provides control over granularity.
If the goal is to produce a non-interactive, static visualiza-
tion, then optimization of the number of clusters
becomes crucial, for example through plotting of cluster
silhouettes [32].
Please cite this article as: A. Skupin, A. Esperbé, An alternativ
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The SOM itself could be used to enforce a contiguity
constraint for improved cluster delineation that can then
be projected into geographic space. For example, the large
pieces that make up cluster 11 in the SOM space of Fig. 6
(along top edge and in bottom right corner) should likely
become separate clusters. Imposing such a contiguity
constraint would be akin to Openshaw’s well-known
method [33,34], albeit now applied within a spatialization
of n-dimensional space.

In terms of symbolizing clusters, automation of color
choices would be a useful improvement [5,35,36], as
compared to the method used here, in which colors were
manually assigned to clusters, based on their geometric
and topological arrangement in the SOM.

In terms of the shape and size of clusters in the
geographic map, the current use of a standard area-
preserving projection (bottom of Figs. 5–7) allows direct
comparison to the types of national-scale mapping pro-
ducts most users will be familiar with, such as thematic
atlas products. However, if the goal of such mapping is to
express the likelihood of people actually encountering
particular attribute space patterns on-the-ground, then
transformations of local scale could be pursued, for
example by enlarging highly populated areas at the cost
of thinly populated ones. That is in effect already happen-
ing in SOM space (top of Figs. 5–7), due to density effects
of SOM training. In geographic space, area cartograms
[37,38] would be a well-known approach for achieving a
similar effect, by letting the total population count of each
block group drive its display area. Another alternative is
the PixelMap technique [39], which is conceptually simi-
lar to how the SOM achieves local scaling in that regions
containing a large number of enumeration units would be
afforded a larger total display area.

References

[1] A. Skupin, P. Agarwal, Introduction: what is a self-organizing map?
in: P. Agarwal, A. Skupin (Eds.), Self-Organising Maps: Applications
in Geographic Information Science, John Wiley & Sons, Chichester,
England 2008, pp. 1–20.

[2] A. Skupin, A novel map projection using an artificial neural net-
work, in: Proceedings of the 21st International Cartographic Con-
ference, Durban, South Africa, 2003, pp. 1165–1172.
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[24] W. Köppen, Klassifikation der Klimate nach Temperatur, Nieders-
chlag und Jahreslauf, Petermanns Geographische Mitteilungen 64
(1918) 193–203.

[25] C.W. Thornthwaite, An approach toward a rational classification of
climate, Geographical Review 38 (1948) 55–94.

[26] W. Zelinsky, North America’s vernacular regions, Annals of the
Association of American Geographers 70 (1980) 1–16.

[27] T.G. Jordan, Perceptual regions in Texas, Geographical Review 68
(1978) 293–307.

[28] D. Guo, Regionalization with Dynamically Constrained Agglomera-
tive Clustering and Partitioning (REDCAP), International Journal of
Geographical Information Science 22 (2008) 801–823.
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