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Summary 

This chapter introduces a new method for visualizing the paths of point features moving 

across geographic space. It draws inspiration from two separate strands of research within 

Geographic Information Science. One relates to a renewed interest in the central notion of time 

geography, space-time paths, and the growing technological ability to determine such paths with 

high spatial and temporal resolution using the Global Positioning System (GPS). The second 

trend influencing the proposed methodology concerns methods for modeling multidimensional 

attribute data. Spatialization is one such approach. The chapter proposes to project a space-time 

path onto the spatialized representation of n-dimensional attributes associated with geographic 

features encountered along the path. First, a spatialized representation of geographic features 

based on their attributes is derived through the self-organizing map (SOM) method. Then, a 

spatio-temporal trajectory is projected on the SOM, leading to the visual emergence of an 

attribute space trajectory. This is implemented in two experiments, one involving long-distance 

travel on Interstate highways, the other concerned with journey-to-work paths in an urban 

environment. 

1 Introduction 

Imagine the following scenarios: 

(1) You are on holiday driving on a country road somewhere in central Texas. As you come 

through a small town, you say to your passenger: “You know, I’ve never been here before, 

but what I saw for the last couple of miles looked familiar.” Then, you give a voice 

command to the vehicle’s navigation system: “Match last ten miles to similar locations 

outside of Texas!” The system responds with a list of five counties, one of which you 

recognize: “Ah yes, that’s where I spent the summer of ‘93.” 

This is a pre-publication draft only. For the final, published version, please refer to: 
Skupin, A. (2008) Visualizing Human Movement in Attribute Space. In: Agarwal, P. and Skupin, A. (Eds.) 
Self-Organising Maps: Applications in Geographic Information Science. Wiley.
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(2) You are a human geographer interested in finding out about differences in how men’s and 

women’s life experiences are shaped by their daily spatial routine. You know that 

researchers have used positional tracking with GPS to capture and compare space-time 

paths. However, you would like to have a convenient way of directly comparing paths 

captured in different cities. Luckily, a major GIS (geographic information system) 

software company has just released a product that allows such holistic comparison, 

generating a display of GPS tracks that looks a lot like a map, but is not based on 

geographic space. The direct visual comparison of male and female tracks will not only 

inform your research conclusions, but will also make for great poster presentations at 

professional meetings and may even catch the eye of policy makers. 

(3) You are teaching an introductory college course in urban geography. You want to give 

your students some experiential sense of the structure of the city of New Orleans. A 

popular approach for doing this is to take students on an inexpensive city tour using public 

transport. Ideally, you would like to take a bus that starts at the Mississippi river, and runs 

northward, crossing the Irish Channel, the Garden District, and Central City in quick 

succession. These are three adjacent, yet racially and economically extremely diverse 

areas, illustrating the socio-economic patchwork that is typical for this city. There is just 

one problem: you and your students are in Philadelphia! To look for a solution, you start 

out with a “normal” geographic map display of New Orleans and draw a line following 

your chosen path. Then you turn to the same GIS software product mentioned in the 

previous scenario. It generates a single “map” showing both your New Orleans path and 

all the bus lines running in Philadelphia. From this map, you chose the bus path that 

provides the best visual match. For a more authentic New Orleans experience, you have 

the heat turned up in the bus, even in the middle of summer. As the bus drives through 

New Orleans in Philadelphia, you make sure to point out not only similarities but also 

differences between the two. 

 

In all of these scenarios, one recognizes elements of contemporary geographic inquiry and one 

can imagine certain approaches to partially implement them. However, different methods for 

locating geographic features and performing computations on them are here combined in a novel 

way. The basic premise of this chapter is that as one moves across geographic space, one 

simultaneously passes through an n-dimensional attribute space of the geographic features 

encountered along the way. It is posited that explicitly visualizing these attribute-time paths as 

trajectories in a spatialization may be of value in the investigation of moving entities.  
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First, I will discuss some of the important developments within geographic information 

science informing this new way of looking at spatio-temporal trajectories. These range from early 

thoughts about time geography to its recent reemergence in the context of network accessibility 

modeling and feminist visualization. On the other hand, these scenarios only sound viable in the 

context of such computationally intense methods as artificial neural networks, Bayesian 

networks, or genetic algorithms. These methods are indicative of a growing awareness of a need 

to deal with high-dimensional attribute data beyond approaches rooted in the data-poor 

environment of traditional statistical inference (Openshaw 2000). The chapter argues that great 

synergistic potential may lie in a combination of time geography with methods designed to deal 

with high-dimensional attribute spaces. To that end, I first give a brief overview of some related 

techniques. After outlining a methodology aimed at combining space-time paths with self-

organizing maps, two implementations are discussed and illustrated.  

2 Relationship to other work 

The last decade has seen a revived interest in early work on time geography (Hägerstrand 

1970; Pred 1977), which deals with the movement of individuals in space over time. Hägerstrand 

and his contemporaries laid out the foundations of time geography with such notions as space-

time paths and prisms, and envisioned a number of interesting applications of these concepts. 

However, technologies for detailed capture of space-time paths and their computational modeling 

were either not yet developed or were missing crucial components. By the early 1990’s GIS had 

developed to a point were many of the database requirements and modeling aspirations of time 

geography could be supported. Harvey Miller’s work on modeling network accessibility with 

space-time prisms exemplified this (Miller 1991). 

It also became possible to deal with large amounts of disaggregate data, for example travel 

diaries, including the places of residence, employment, and other activities (Kwan 2000b). 

Toward the end of the 1990’s, consumer-grade GPS receivers became available that made it 

feasible to capture detailed paths of individuals. It is not surprising that, at a time when many 

postmodern and feminist geographers looked upon maps, mapmakers, and mapmaking 

technology with great suspicion, similar criticism was extended to the integration of GIS and GPS 

in the implementation of time geography. Partly designed as constructive response to rightful 

social critique of unquestioned use of geospatial technology, a growing number of geographers 

have in recent years advanced geographic information science by actively engaging it from 

within, mostly under the heading of participatory GIS. In the context of time geography, Mei-Po 

Kwan’s work on the development of ‘feminist visualization’ has been particularly significant 
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(Kwan 2000a, 2002), and is quite compatible with the methodology described later in this 

chapter.  

Evidence for the resurgence of time geography can also be found in the evolution of  the 

concept of ‘geospatial lifelines’ towards real-world application (Sinha and Mark 2005). As 

technology for capturing geographic location moves beyond dedicated devices (i.e., GPS 

receivers) towards ubiquity (e.g., in mobile phones), space-time paths will likely become an 

integral part of location-based services (Mountain and Raper 2001). 

Apart from the ability to capture space-time paths, the scenarios described earlier make both 

overt and implicit reference to a capacity to assess similarity of space-time paths. The type of 

similarity referred to here is not based on low-dimensional, geometric characteristics, like shape. 

Instead, the focus is shifted to the attributes of geographic features. Most efforts at modeling 

similarity are purely computational (as opposed to involving a visualization component) and 

restricted to the spatial domain, with the temporal domain only gaining prominence recently 

(Yuan 2001). It is still rare to see the attribute domain explicitly considered. Indeed, while one 

would expect “multidimensional” modeling to include the added dimensionality of attributes, it 

typically refers to the combination of three spatial dimensions and one temporal dimension 

(Raper 2000). In the context of this chapter, the most important observation is that space-time 

paths have rarely been linked to representations of the attribute domain, even within the growing 

area of geographic data mining and knowledge discovery (Miller and Han 2001). 

When looking for visual representations of the attribute domain, the self-organizing map is an 

obvious candidate. Most implementations of SOM trajectories involve objects whose attributes 

are changing and are therefore changing position with respect to a SOM in which each neuron has 

a fixed set of weights, one for each attribute. This has frequently been used in stock market and 

other financial analysis (Kohonen 2001; Deboeck and Kohonen 1998). In the context of spatio-

temporal data, this approach has been used to depict counties as trajectories based on multi-year 

census attributes (Skupin and Hagelman 2005).  

3 Methodology for visualizing movement in attribute space 

As a space-time path (STP) runs through and past features located in geographic space, it can 

be conceptualized as simultaneously passing through and past these same features located in an n-

dimensional attribute space as given by n attributes known for each feature. We can refer to the 

resulting trajectory as an attribute-time path (ATP). An STP can be easily displayed in either 3D 

− within a space-time cube, or 2D − when the cube is viewed orthogonally to the two spatial 

dimensions. However, an ATP cannot be directly displayed, since n will typically far exceed the 
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number of available display dimensions. It is proposed here to first spatialize the attribute data 

and then project the ATP onto the spatialization to form a spatialized attribute-time path (SATP). 

Figure 1 illustrates this schematically with a trajectory traversing an area tessellated by polygonal 

features. Attributes of these features are spatialized using any suitable dimensionality reduction 

technique (e.g., SOM, MDS, PCA). Since every attribute has only one value for every polygon, 

each polygon becomes an individual point object in the spatialization. Polygons that are actually 

traversed become SATP vertices in the order of traversal (Figure 1). Notice how polygons E and 

G form the beginning and end points of the path, but are actually located relatively close in the 

spatialization. In other words, the SATP describes a circular route caused by the relative attribute 

similarity between those two polygon features.  

When spatializing in two dimensions, the third dimension remains available to represent time, 

thus forming a spatialized attribute-time cube (SATC), which we will not deal with further in this 

chapter. 

Insert Figure 1 approx. here 

 

The following describes a specific methodology for implementing spatialized attribute-time 

paths, as pursued in this chapter (Figure 2). Spatialization of individual attribute-time paths is 

based on a single spatialization derived from a large number of geographic objects and their 

attributes. Choosing the geographic type, extent, and granularity of geographic objects is a crucial 

first step. Geographic type refers in particular to differences between objects conceptualized as 

points, lines, or areas. One could even spatialize individual cells or pixels, as provided, for 

example, by multispectral remote sensing. In this chapter, all examples are based on polygon 

objects. Specifically, we completely tessellate a given study area via administrative or 

enumeration areas (i.e., counties, census block groups, etc), thereby allowing unequivocal 

association of path vertices with geographic objects. Point and line objects could of course also be 

used, within certain proximity constraints. Objects to be spatialized must at least cover the 

expected extent of space-time paths, but one may want to go much beyond that in order to allow 

future paths to be easily spatialized, especially since one of the prime goals of this approach is to 

facilitate comparison of paths traversing different geographic areas. The granularity or density of 

geographic objects must be matched against characteristics of the captured paths and the purpose 

for spatializing them. For example, spatialization of paths based on counties (i.e., space-time 

paths spatialized as temporal sequence of counties) may be interesting for regional analysis. 

However, this would likely be too coarse when one wants to link a space-time path to the visual 

experience of someone following it on the ground. 
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Insert Figure 2 approx. here 

 

When spatializing geographic objects, it is natural to want to include a great number of 

attributes, especially in an exploratory setting. Depending on the specific application, one may 

find it useful to include demographic, economic, or physical attributes. Those choices will often 

be limited by the actual availability of such attribute data, especially when dealing with a large 

geographic extent and fine granularity, as discussed above. Socio-demographic data, as published 

by the U.S. Census Bureau, are a rare exception, with dozens of attributes readily and at little cost 

available at multiple granularities. That was the main reason for using census attributes in the 

experiments described in this chapter.  

The purpose of preprocessing is to turn raw attribute data into something suitable for neural 

network training using the SOM method. This may involve, for example, logarithmic 

transformation for highly skewed distributions and normalization of attribute ranges. After SOM 

training is completed, the same input data or other data (not illustrated in Figure 2) are mapped 

onto it to derive point coordinates for each input feature. 

GPS is a logical choice for capturing STPs. Among dedicated devices, even consumer-grade 

receivers can now capture quasi-continuous paths with great spatial and temporal resolution. 

Standard GPS protocols, like NMEA, provide time stamps in Greenwich Mean Time for every 

observation. GIS overlay can be used to match a space-time path to the geographic objects 

encountered. This can be based on an exact or proximal match. After extracting the temporal 

sequence of objects, their corresponding point locations are found in the spatialization and linked 

to form a spatialized attribute-time path. Various layers could now be displayed within the same 

2D geometric space that originated with the self-organizing map. Apart from the SOM and its 

immediate visual derivatives (e.g., U-Matrix, component planes, neuron clustering), one can 

display the SATP and the point locations of spatialized geographic objects simultaneously or in 

sequence.  

4 Experiment 1: Travel on Interstate Highways 

This section describes a first experiment for implementing the methodology laid out in the 

previous section. Traveling on U.S. interstate highways, especially in the western states, provides 

ample time for contemplating the geographic space one traverses. While traveling the United 

States by car, detailed geographic trajectories were captured by GPS, totaling over 6000 miles in 

length. The hardware used consisted of a Compaq iPAQ PocketPC paired with a CompactFlash 



7 

GPS card with external antenna and accompanying software, which stored track coordinates as a 

text file. 

The chosen granularity of geographic base data was at the county level. For each of the 3140 

counties, 40 socio-economic variables from the 1990 census were used, with a focus on race, 

marital status, age structure, and housing characteristics. Then a high-resolution SOM consisting 

of 10,000 neurons was trained (Figure 3). A selection of twelve of the forty component planes are 

shown here. As is typical with this form of SOM visualization, one can recognize major 

relationships between variables and one can also observe how prevalent certain portions of a 

variable’s range are. For example, in the population density variable, few neurons have very high 

values. On the other hand, white population percentage shows high and medium values 

throughout, except in areas with large black population percentage and especially in SOM areas 

with a high percentage of households with children headed by a female (i.e., single mothers). 

 

Insert Figure 3 approx. here 

 

A SOM with a relatively large number of neurons allows discerning finer structures in the 

input space that would be lost to the aggregating effects of a coarser SOM. When n-dimensional 

observations are then mapped onto such a SOM, the resulting two-dimensional locations are 

spread throughout the finely grained display space. This is advantageous whenever geometric 

operations on individual objects are desired, for example to place multivariate point symbols or 

perform selections. Choosing SOM size in this experiment was thus driven by the goal of ideally 

establishing a unique two-dimensional location for each county. Despite the 3:1 neuron-to-county 

ratio (10,000 neurons versus 3,140 counties), some neurons became associated with multiple 

counties. To counter this remaining clustering effect, counties were randomly distributed within 

hexagonal polygons spanned around each node in the SOM (Skupin 2002). This allows 

generating unique county coordinates while still maintaining unequivocal links between neurons 

and counties.  

Shown in this paper is one of the GPS tracks, in which a drive from Santa Barbara to New 

Orleans via San Francisco was documented with more than 25,000 vertices (Figure 4). GPS 

tracks were overlaid with county maps to produce a sequence of traversed counties and 

spatialized on the basis of that sequence (Figure 5).  

 

Insert Figure 4 approx. here 
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Insert Figure 5 approx. here 

 

As different as such cities as San Francisco and New Orleans might be and as far apart in 

geographic coordinate space they are, when arriving at one of these from the other, one realizes 

that – relative to the rest of the country as expressed by the involved attributes – one is back to 

where one started! The proposed method allows to spell this out, albeit visually, with the two 

cities appearing as neighbors in the SOM (lower right corner in main map in Figure 5). Notice 

how some geographically close portions of the path correspond to relatively compact portions of 

attribute space. One such region is entered when crossing from Smith County into Gregg County 

in Texas (see upper insert map in Figure 5). The path only leaves that region when crossing from 

St. Charles Parish into Jefferson Parish (not labeled here), just outside New Orleans. 

Time stamps provided by GPS allow mapping the amount of time spent at certain locations, 

indicated here through graduated circles (Figure 6). Despite traversing huge portions of a very 

large country, the resulting visualization indicates that most time, and presumably money, was 

spent in a limited portion of attribute space (compare also to Figure 3).  

 

Insert Figure 6 approx. here 

 

5 Experiment 2: Journey to Work 

One major goal driving the notion of attribute-time paths and their spatialization has been to 

allow exploring possible links between the experience of geographic space and the attributes of 

geographic features encountered along a trajectory. Ultimately, one would like to see (in a 

spatialization) trajectories that readily evoke the notion of traveling through attribute space. On 

the other hand, as one travels across geographic space, one should be able to experience patterns 

in attribute space as corresponding patterns in geographic space. County-level granularity 

combined with movement on the Interstate highway system (see previous section) does not really 

allow this, owing to the large size of counties and the homogenizing effects of Interstate highway 

routing.  

For the second experiment, much finer granularity and shorter, urban paths were chosen. 

Census block groups, which typically contain around 500 persons, provide that fine granularity, 

yet their geometry and census attributes are readily available for the whole country, which allows 

keeping the geographic extent at the national level. The census data used here contained 208,671 

block groups from the 2000 census, together with 32 socio-demographic attributes. Because many 
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of the raw attributes were to be divided by either population size or household size, those block 

groups containing no population or no households were removed, yielding a final input data set of 

207,933 block groups. Some highly skewed variables were logarithmically scaled and all 

variables eventually fitted into a 0-1 range. Given the large number of block groups and the goal 

of creating a point location for each of them (as discussed in previous section), a SOM consisting 

of 250,000 (500x500) neurons was created (Figure 7). Training took 92.5 hours (wall clock time) 

on a 2.8 GHz Xeon PC. Mapping of all 207,933 block groups onto the trained SOM took another 

123 minutes. 

 

Insert Figure 7 approx. here 

 

Recent implementations of time-geography concepts have generally focused on urban 

environments, with travel on city streets. In deciding on a specific type of path to be captured, 

inspiration was drawn from the kind of socially critical analysis pursued by Mei-Po Kwan (Kwan 

2002). Journey-to-work paths are a particularly worthwhile subject of inquiry, since the vast 

majority of employed persons have to travel a certain distance from their residence to the place of 

employment. Differences in the mode, duration, and routing of these paths provide an interesting 

subject of study, reflecting society’s organization along lines of gender, race, age, and other 

factors. Travel mode, duration, and routing are of course interrelated, as already noted by 

Hägerstrand: “… the car-owner, because of his random access to transport, has much greater 

freedom to combine distant bundles than the person who has to walk or travel by public 

transportation” (Hägerstrand 1970). When pursuing the quickest route to work, private vehicles 

will tend to provide a more straightforward path and shorter overall travel time than public 

transport, at least in the New Orleans metro area. Perhaps more important with respect to the 

method proposed in this chapter is that different paths taken between residence and place of 

employment may entail differences in the geographic environment experienced en route.  

The author’s previous places of residence (Mid-City neighborhood in New Orleans) and 

employment (University of New Orleans) were chosen as origin and destination, respectively. 

Journey-to-work paths were captured using GPS on two subsequent mornings. Photos were also 

taken along the journey, to later allow juxtaposing visual impression (as one element of en route 

experience) with attribute space location. On the first day, a private vehicle was taken and the 

quickest route through the street network followed (from here on referred to as “private path”). 

On the next day, public transport with busses of the Regional Transit Authority was utilized and 

the path captured (from here on referred to as “public path”). Both tracks were started at 
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approximately the same time of day (Figure 8). As expected, the private track was shorter in both 

space and time, running from Mid-City through the Bayou St. John neighborhood, then along 

City Park and the Mirabeau Gardens neighborhood, reaching the destination within about 18 

minutes. The public path involved taking two buses, one connecting Mid-City with the Central 

Business District and the edge of the French Quarter, the second bus running first parallel to the 

Mississippi river and then following a straight northward path, toward Lake Pontchartrain. 

Following this path took 65 minutes, including transfers. 

 

Insert Figure 8 approx. here 

 

After intersecting the private and public paths with census block groups, the corresponding 

sequence of block groups was mapped onto the SOM (Figures 9, 10, 11). A total of 31 and 12 

different block groups were traversed on the public and private path, respectively. In figure 9, 

block groups are labeled in the order of traversal. The origin in Mid-City is labeled “1” for both 

paths and the final vertex as “37” for the public path and “13” for the private path. Note that a 

new ID is created every time a census block boundary is crossed. Multiple entries into the same 

block group are possible, depending on how block groups and paths are shaped. The resulting 

duplicate labels for some block groups are kept in Figure 9, in order to allow tracking of the exact 

vertex sequence. Figure 10 shows both paths together and with respect to the complete 2-D SOM 

space. Finally, Figure 11 seeks to identify some of the specific attribute patterns common to 

neighborhoods along the public path. It shows the extreme diversity of neighborhoods 

encountered. Summary statistics for urban counties (like used in the first experiment) tend to hide 

internal urban heterogeneity. New Orleans, for example, can best be characterized as a patch 

work of often extremely different socio-demographic zones. The Mid-City origin of the public 

path is a bit of an exception, as it is actually quite integrated, thus mirroring a possible summary 

view of the city. However, once moving south along Canal Street, the city’s extremes become 

more apparent, at first in terms of gradually increasing percentage of black population. Just before 

reaching the CBD, this movement towards the extreme lower right corner of the SOM ends in a 

block group with 100% black population. Entering the CBD corresponds to a large jump upwards 

along the SOM’s right edge, followed by traversal of block groups on the edge of the French 

Quarter, and so forth. 

 What both Figure 9 and 11 illustrate is that named neighborhoods become manifested as 

regions in the SOM. For example, along the public path the French Quarter is the region with by 

far the highest percentage of white population (left portion of Figure 11), and large proportions of 
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vacant housing, of households consisting of single males, and of persons in the 30 to 39 year age 

range (Figure 10). Compare this to Gentilly Woods, which is a middle-class area, with mixed 

racial composition and mostly owner-occupied housing. Traversing a geographic path means to 

either move within one of the neighborhoods or to move between them. Moving between named 

neighborhoods can occur rapidly, as seen when entering the CBD coming from Mid-City (see left 

portion of Figure 9), or it can involve intermediate block groups. Examples for the latter are seen 

in vertex “23” linking Faubourg-Marigny and New Marigny or vertex “29” between New 

Marigny and Gentilly.  

6 Conclusions 

This chapter argues that adding an attribute space representation to the mix of Hägerstrand’s 

original ideas with GPS, GIS, and geographic visualization may be an interesting and useful 

endeavor. While the early examples shown here are meant to illustrate the potential of this 

approach, they also convey a sense of the issues to be explored in future work. One of these 

relates to the choice of geographic data with which space-time paths are to be matched in order to 

generate attribute-time paths. While both examples used census data, the methodology 

accommodates other types of data. For example, when mapping out hiking trails in attribute 

space, one would want to focus on physical attributes, such as vegetation cover or slope 

steepness. With the emergence of wireless sensor networks, the on-the-fly “re-routing” of 

attribute-time paths based on changes in environmental factors (e.g., temperature, humidity) may 

become a valuable option. Today, hikers may look at Web sites displaying loops of NEXRAD 

data. Tomorrow, they might also see a looped animation of a spatialized ATP, possibly indicating 

a slow drift towards a danger zone. 

For much of this chapter, spatialized attribute-time paths were treated (processed, stored, 

visualized) similar to space-time paths. Of course, there are important differences that remain to 

be investigated. For example, with space-time paths the notion of bundles (Hägerstrand 1970) has 

tangible, common sense implications. In a bundle, different STPs meet in geographic space for a 

period of time, the persons associated with them are enabled to directly communicate and 

interact. Similarly, making a phone call establishes a temporary bundle of trajectories in the 

virtual space of the phone system. But how are we to interpret a bundle of SATPs? What does it 

mean when two people moving through different cities are “meeting” in attribute space? 

Assuming that a sufficiently rich set of attributes drives the creation of a spatialization, SATP 

bundles may correspond to similar impressions and experiences. In turn, similar (or different) 

experiences may become manifested in similar (or different) social attitudes.  
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Whether or nor these speculations about SATPs hold true remains to be seen. In this context, it 

may be worthwhile linking attribute-time paths and their spatialized form to the investigation of 

activity spaces. Similarly, one might ask to what degree such notions as domains or constraints 

(e.g., those shaping space-time prisms) are transferable to attribute-time paths, thereby answering 

recent calls to rethink the concept and implications of individual accessibility in the light of 

technological advances and societal change (Kwan and Weber 2003). In approaching any of these 

issues, a major aim of future spatializations must be to incorporate multiple paths taken by 

multiple persons in multiple geographic areas, which was not demonstrated in this chapter. Such 

ability to visually compare paths covering separate study sites would truly demonstrate the 

usefulness of this method for time geography. 

Some might argue that using a SOM for deriving a spatialization from only the non-spatial 

attributes of geographic features ignores important spatial relationships (e.g., topology, distance 

in geographic space) that may be very relevant for understanding a given domain. That is a valid 

argument, whenever such relationships are indeed ignored during training and use of a SOM. This 

is the case when individual geographic features are visualized as points in a spatialization or 

when trajectories are generated for features that are spatially fixed, but whose attributes are 

changing over time (Skupin and Hagelman 2005). However, the attribute-time paths described in 

this chapter are different in that neighboring vertices within a path correspond to topologically 

connected features in geographic space. Therefore, the length of a line segment in the 

spatialization gives some indication of spatial autocorrelation. Due to the distortion of n-

dimensional proximities, this is only a rough approximation and quite dependent on the exact 

parameters of the spatialization method. The exact nature of the relationship between spatial 

autocorrelation and proximity in a spatialization is an interesting subject for future research. 
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Figure 1. Space-time path transformed into an attribute-time path traversing a spatialization of 
attributes for polygon features. 

 

 

Figure 2. Methodology for creating a spatialized attribute-time path using GPS, GIS, and SOM. 

 

 

Figure 3. Several component planes from a 100-by-100 neuron SOM trained with socio-economic 
data for all U.S. counties. Lighter shading indicates higher values for a component layer. 
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Figure 4. Experiment 1: Overview Map. Traveling from Santa Barbara to New Orleans, a track 
consisting of 25,000+ vertices was captured with a GPS receiver. 

 

 

Figure 5. Space-time path for travel from Santa Barbara to New Orleans projected onto self-
organizing map of 3,140 counties. 
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Figure 6. Visualization of time spent in each county during a multi-day drive from Santa Barbara to 
New Orleans. 

 

 

Figure 7.  Several component planes of a SOM trained with socio-economic attributes for 200,000+ 
U.S. census block groups. Lighter shading indicates higher values. 
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Figure 8. Experiment 2: Overview of study area. Two different journey-to-work paths were collected 
between origin and destination. 

 

 

Figure 9. Journey-to-work paths traveled with private vehicle and public transport and visualized on 
spatialized block groups. Census block groups are labeled in order of traversal. Neighborhoods are 

also labeled. 
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Figure 10. Journey-to-work paths overlaid on a spatialization of census block groups. Lighter 
shading indicates higher values in component planes. 

 

 

Figure 11. Visualization of attributes of block groups traversed during journey-to-work using public 
transport. 
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Normalized by
1 Population size Area
2 White population Population size
3 Black Population size
4 American Indian / Eskimo Population size
5 Asian Population size
6 Hawaiian / Pacific Islander Population size
7 Other Population size
8 Multi-race Population size
9 Hispanic Population size

10 Males Population size
11 Females Population size
12 Age < 5 Population size
13 Age 5-17 Population size
14 Age 18-21 Population size
15 Age 22-29 Population size
16 Age 30-39 Population size
17 Age 40-49 Population size
18 Age 50-64 Population size
19 Age >= 65 Population size
20 Median age n/a
21 Average household size n/a
22 Households w 1 male Households
23 Households w 1 female Households
24 Households married w/ children Households
25 Households married w/o children Households
26 Male head of household w/ children Households
27 Female head of household w/ children Households
28 Average family size n/a
29 Vacant housing units Housing units
30 Owner-occupied housing unit Housing units
31 Renter-occupied housing unit Housing units

Variable

 
 

Table 1. Experiment 2: Variables for 200,000+ census block groups used as input to SOM 

training.  

 

 

 


