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Summary 

This paper proposes to conceptualize a geographic trajectory as an attribute-time path (ATP) 

traversing an n-dimensional attribute space. Geographic entities occupying a certain study area 

are conceptualized as discrete loci in that same n-dimensional space. Those entities undergo 

spatialization and the resulting point locations become vertices as the ATP is projected into lower 

dimensions to form a spatialized attribute-time path (SATP). Visual exploration of such a path 

supports novel perspectives on the nature of geographic space, including how it is traversed, 

transformed, and experienced by those that inhabit it. 

Examples based on two different data sets are presented, with population census data 

providing n-dimensional attributes of geographic entities in both cases. The first study illustrates 

how a transect of Vienna, Austria, reveals patterns of difference/similarity, once it is spatialized. 

The second set of examples is based on an extremely large neural network model derived from 

data for all 200,000+ U.S. census block groups. Commuter trajectories captured in New Orleans 

and San Diego are projected onto the spatialized block groups and the resulting SATPs 

interpreted.  

1. Introduction 

As we move across geographic space, aren’t we simultaneously moving through a high-

dimensional attribute space in which the geographic entities are located that we encounter along 

the way? Building on this premise, imagine that one has captured several paths that either traverse 

the same region or are even contained in wholly disjoint geographic regions. If these paths are 

now passing through areas that exhibit similar attributes, they are coming close to each other in n-

dimensional space. This fact, as well as such characteristics as n-dimensional direction, looping, 

and so forth may aid our understanding of the paths and of the entities traveling on them, 

depending on how meaningful the set of measured attributes is.  

The human mind can not easily cognize such high-dimensional movement without first 

implementing means for dimensionality reduction. The key to achieving this is to conceive of a 
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combination of previously separate technologies. The convergence proposed in this paper 

involves location determination (e.g., through GPS) and spatialization. The latter is here 

understood as the process of transforming high-dimensional data into a visual form via low-

dimensional geometry (Skupin and Buttenfield, 1997), which has in the last few years been 

implemented for diverse data types from text documents to population census tables (Skupin, 

2004, Skupin and Hagelman, 2005). 

Attribute-time paths (ATPs) may be encountered in a number of principal circumstances. One 

would be the case of a geographic object remaining stationary but changing its non-spatial 

characteristics, thus moving in attribute space. Such a conceptualization of geographic change 

and its application to area-based census attributes has been described elsewhere (Skupin and 

Hagelman, 2005). In this paper, a different situation is addressed, where individuals move across 

geographic space and along the way encounter geographic objects with different characteristics. 

Moving from one object to the next thus becomes movement through attribute space.  

The idea of an ATP derived from the movement of individuals across geographic space 

constitutes a natural extension of space-time paths (STPs). These have been most prominently 

associated with the work of Thorsten Hägerstrand (Hägerstrand, 1970, Pred, 1977). The last 

decade has seen a resurgence of work in the general area of time geography, notably under the 

influence of improved methods for position measurement and geospatial databases and modeling. 

These efforts have included the further development of major concepts, such as space-time prisms 

(Miller, 1991). Early investigations of time geography tended to rely on origin-destination pairs 

(e.g., places of work and residence), but the capture and analysis of individual space-time paths 

with high geometric details has now become common place (Kwan, 2002, Mountain and Raper, 

2001).  

The approach put forward here addresses two issues with existing methods for analysis of 

space-time paths. One problem is that the existing visualization approaches are too restrictive 

with regard to geographic space providing x-y coordinates in the display space. This is the case 

both for 2-D maps of space-time paths and for 3-D space-time cubes, where the third dimension 

conveys the progression of time. Both approaches are useful for data sets containing paths from a 

single geographic study area. However, they do not accommodate visualization of paths 

traversing multiple, disconnected geographic areas, such as different metropolitan areas.  

Another issue relates to attempts to categorize geographic objects based on attribute similarity. 

Particularly prominent have been examples using socio-economic data, such as ESRI’s 

Community Tapestry or similar efforts in Great Britain (Rees et al., 2002, Webber and Longley, 

2003). The resulting categories can be mapped onto geographic space and geographic patterns 

inspected. However, classes are typically treated as discrete n-dimensional locales, without much 
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ability to see transitory, field-like variation, nor nuanced relationships among categories that in 

reality exist in n-dimensional space. 

The approach put forward here addresses both of those concerns. First, by not considering 

explicit geographic coordinates in the display of space-time paths it becomes possible to compare 

paths from different geographic areas. Second, major topological structures existing in the n-

dimensional input space are preserved in the two-dimensional display space. Therefore, one can 

not only distinguish regions in the n-dimensional space, but develop some understanding of their 

relative location.  

2. Integrating spatialization with geospatial data and technology 

Central to the notion of spatialized attribute-time paths is the idea that in order to learn more 

about certain geographic phenomena we may have to [temporarily] ignore traditional geographic 

coordinates during visualization. Some existing methods, like parallel coordinate plots (PCPs), 

and scatter plot matrices, follow a similar approach as they transform the geometric 

representation of geographic objects on the basis of their descriptive attributes. However, those  

methods tend to also lose some fundamental affordances of traditional geographic geometry, most 

notably the ability to support observation of complex geographic distributions and relationships in 

holistic two-dimensional or three-dimensional form. Axes in individual scatter plots correspond 

to single variables, which makes it difficult to see complex high-dimensional relationships, even 

when larger scatter plot matrices are constructed. In a PCP, multiple axes are placed in parallel, 

each associated with a particular variable. Through a side-by-side display of these axes and 

connections made between attribute values for each object, the PCP transforms each geographic 

object into a line consisting of multiple segments, with strict norms on line geometry (e.g., no 

looping). 

These information visualization methods also tend to be highly interactive, and this 

interactivity often includes manipulation of geometric and topological relations, far beyond what 

would be considered permissible when dealing with geographic coordinate space. As a result, 

users of such methods are dealing with an ever-changing display, where little is fixed and few 

aspects can be taken for granted.  

Compare this to the notion of the base map in traditional cartography, where the relationship is 

established and fixed between the world coordinate system (e.g., in latitude and longitude) and 

the projected or display coordinate system. A fixed geographic feature located at a certain latitude 

and longitude will occupy the same map position today as it did yesterday and as it will 

tomorrow. The known distance between two fixed positions can likewise be trusted to remain 

such for some time. Having established geographic location as a relatively fixed aspect of a 

geographic map, we are then free to utilize the remaining set of visual variables for most mapping 
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tasks. If an object indeed changes its position in the visualization, then this is detected against the 

back-drop of an otherwise stable base map and thus interpreted as movement of the object across 

geographic space.  

The method proposed here attempts to extend the power of maps in enabling humans to detect 

complex relationships towards n-dimensional attribute space. Instead of using a very limited 

number of variables, as in scatter plots, or of axes with distinct, predefined meaning, as with 

PCPs, we propose to create map-like information visualizations (Skupin, 2002b), in which output 

dimensions are based on transforming a large number of input variables into a low-dimensional 

output space. Once a geographic object is represented with zero-dimensional, point coordinates in 

a low-dimensional space, that location remains fixed unless the object’s attributes have changed. 

Thus, a stable base map is created on top of which other features can be displayed. A number of 

methods could be used to perform dimensionality transformation / spatial layout, including multi-

dimensional scaling (MDS), spring layout, and the self-organizing map (SOM). In the 

experiments presented in this paper SOMs are used due to their scalability to very large data sets.   

Meanwhile, space-time paths (STPs) are geographically overlaid with the same geographic 

objects from which the point spatialization was derived (see Figure 1). Each STP is 

conceptualized as moving from object to object, forming a topological sequence of geographic 

objects. When dealing with polygon objects, STP vertices are matched with polygons through 

point-in-polygon overlay. This is the case for all experiments discussed in this paper. Point or line 

objects will require certain distance-based transformations before becoming associated with 

defined STP portions. With geographic objects becoming nodes in a high-dimensional, directed 

graph (i.e., an ATP) one can finally derive the low-dimensional position of each node from the 

point spatialization in order to create the SATP (Figure 1).  

 

[Insert Figure 1 approx. here] 

 

One can imagine several principal modes for using SATPs (Figure 2). First, one can construct 

a point spatialization from geographic objects of a single study area and observe the 

transformation of an individual STP as it becomes represented in the spatialization. A 

geographically straight path may thus actually represent a circuitous route that eventually returns 

to its origin in attribute space (Figure 2a). For an application example, consider spatializing 

geographic features in a city and then tracing the path of a criminal suspect to see whether the 

path leads toward places that are measurably similar to the location of crimes for which that 

person was previously convicted, possibly indicating an impending infraction.  

 

[Insert Figure 2 approx. here] 
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Second, multiple STPs could be mapped onto a spatialization for an individual study area 

(Figure 2b). For example, the known paths of multiple suspects may be mapped simultaneously to 

find out whether any of them have patterns of movement through suspiciously similar locations 

compared to the locations of previously unsolved crimes.  

Third, one could capture STPs within multiple, disjoint sites and spatialize them using a base 

map containing objects from all sites (Figure 2c). This may prove useful in uncovering broader, 

generalizable patterns, for example regarding the movement of criminals in multiple cities. Notice 

in Figure 2c how two geographically completely disjoint STPs turn out to be extremely similar 

SATPs. 

3. Traveling in Attribute Space: Applications and Examples 

This section presents a number of examples for SATPs, each intended to convey one particular 

application mode, as introduced in the previous section. Each example is accompanied by a 

discussion of the data sources, differences in processing, and other choices made during analysis. 

In each of these examples the n-dimensional source data consist of population census attributes 

attached to polygon objects.  

Two different data sets are used. The first study is based on population data for Vienna, 

Austria combined with a GPS transect of that city. The remaining examples are all derived from 

population data for the United States, at the block group level, from which a detailed base map 

spatialization is derived. Various GPS tracks are transformed into SATPs and presented in 

different scenarios.  

3.1. Single path across a single geographic area 

The first example is included here because its scope, source data, and the geographic 

structures encountered lend themselves well to demonstrating some important features of the 

SATP concept. It is an example for a single path traversing a single study area (Figure 2a). The 

source data for constructing the base map consist of 1353 polygons with 158 associated 

population attributes for the Austrian capital, Vienna, and immediately surrounding areas. These 

attributes fall into two broad categories:  

(1) population attributes (age structure, sex, household size, citizenship, educational 

attainment, income) 

(2) buildings and land use (building purpose, types of heating and bathroom fixtures, land use 

types, size of places of employment)  
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A path was captured by GPS while navigating public roads starting in the Donaustadt section, 

which lies at the north-east periphery of the city (Figure 3). After passing through the city center 

(Innere Stadt), the geographic path continues in a south-west direction leading to Mödling, 

outside of Vienna proper. The path crosses 67 different polygon objects. 

 

[Insert Figure 3 approx. here] 

 

[Insert Figure 4 approx. here] 

 

Attributes for the complete set of 1353 polygons are used to train a self-organizing map 

consisting of 5625 neurons (75x75).  Then, instead of visualizing the neural network model itself, 

the closest matching neuron vector is found for each input vector and two-dimensional 

coordinates are accordingly derived (see point symbols in Figure 4) by distributing each input 

object randomly near the best-matching neuron (Skupin, 2002a). Finally, the sequence of 67 

geographically traversed polygons is retraced in the spatialization (see node and line symbols in 

Figure 4). 

The trajectory roughly describes a horseshoe shape with the ends located in the lower right 

and left corners. This shape is traversed twice, from the lower right to the lower left and then 

proceeding to revert back to the origin. How should this be interpreted? In brief, the SATP 

indicates the existence of ring-like structures in geographic space that are transected by the 

geographic path. More detailed analysis of the SATP supports this. The lower right tip of the 

horseshoe corresponds to the outermost geographic areas in Donaustadt and Mödling. In other 

words, arriving in Mödling in some sense means returning to Donaustadt! Meanwhile, the lower 

left tip of the horseshoe is geographically located in the center of the city, aptly named Innere 

Stadt. Once there, while continuing to move towards the south-west, in attribute space we are 

actually beginning the return journey to Donaustadt via all the other regions previously traversed. 

This mirroring effect can be observed even at finer levels within regions, as apparent for the 

Leopoldstadt and Margareten. Notice that the outermost polygons in these regions (19 and 47) 

are neighbors in the spatialization (Figure 4). Geographic movement toward Leopoldstadt and 

away from Margareten corresponds to parallel paths, as indicated by the pairing of the 

previous/next polygons in Donaustadt and Favoriten (18/48 and 17/49). Within Leopoldstadt and 

Margareten one moves towards Innere Stadt (polygon sequence 22-23-24-25 in Leopoldstadt) or 

away from it (43-44-45-46 in Margareten). Discontinuities in the ring-like structure are also 

occurring. Notice how Wieden is what separates Margareten from Innere Stadt both in 

geographic and attribute space, while no such separation exists in geographic space between 

Leopoldstadt and Innere Stadt.  
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In further exploring the specific relationship between STP and SATP the next step would be to 

look into the distribution of attributes across the spatialization. In the interest of brevity this is not 

done for the Vienna example, but examples are contained in the following sections. 

3.2. Multiple paths across a single geographic area 

The previous section described a spatialization based on a relatively small number of 

geographic objects that cover a limited geographic area. The remaining examples in this paper are 

all based on a significantly larger data set consisting of all 200,000+ U.S. census block groups 

and 31 attributes (Table 1).  

 

[Insert Table 1 approx. here] 

 

Like in the previous example, the SOM method is used to create a neural network model, 

which in this case consists of 250,000 neurons (500x500). Since this model is fairly intricate and 

constitutes the base map for all further examples, it is useful to first explore the model itself. 

Visual exploration of a self-organizing map is best begun with a side-by-side view of various 

component planes. In a SOM, every neuron is associated with an n-dimensional vector of the 

same dimensionality as the input vector (here: n=31). With a two-dimensional lattice of neurons, 

one can conceptualize each variable as a field that is sampled at the neuron locations. Component 

plane visualization depicts each of these fields individually (Figure 5).  

 

[Insert Figure 5 approx. here] 

 

This side-by-side comparison of component planes allows a first glimpse at relationships 

between variables, for example based on correlated patterns of local maxima and minima. This 

can include simultaneously elevated values, as in the case of the variables female households with 

children (i.e., single mothers) and black population percentage. Negative relationships are also 

visible, as when the peak of persons over the age of 64 is matched with a low percentage of 

households of married persons with children. An important advantage of self-organizing maps is 

that they allow observing local variations, as opposed to remaining at the level of global 

correlations. For example, while the age over 64 and married household with children variables 

show plenty of negative correlation, there is a region along the right edge of the SOM, where both 

have low values, together with a high percentage of persons age 22 to 29 and households 

consisting of single males. 

In the remainder of the paper, this highly detailed self-organizing map is used to create various 

SATPs. First, the case of multiple paths traversing a single study area is demonstrated. The study 
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area consists of the city of New Orleans, Louisiana. The choice of paths in this example is 

informed by the argument that differences in income may result in a different experience of 

geographic space. Much of this may be due to different modes of transportation being available, 

i.e., private vehicle versus public transport. Accordingly, two paths were captured using GPS. 

The author’s previous residence in the Mid-City section of New Orleans served as the origin and 

the place of employment at the University of New Orleans was the destination for both paths. 

Mid-City is a racially and economically very diverse area, so the assumption of income-driven 

alternative modes of transport to reach the city’s main public university is quite realistic. The first 

path was captured while traveling on buses of the Regional Transit Authority (RTA), while the 

second path involved taking a private vehicle on a typical commuting journey using the quickest 

path (Figure 6a). The sequence of traversed block groups is the basis for showing the two SATPs 

on the SOM (Figures 7 and 8). Block groups are again numbered in sequence (Figure 8), but a 

new number is assigned every time a block group boundary is crossed, so that multiple entries 

into the same block group (i.e., a crisscross path) lead to multiple numbers for that block group, 

for example (e.g., labels 14, 16, 18 along the public transport path). 

 

[Insert Figure 6 approx. here] 

 

[Insert Figure 7 approx. here] 

 

[Insert Figure 8 approx. here] 

 

Apart from the common start and end point, the two paths mostly cross very different portions 

of attribute space. Initially, as they make their way out of Mid-City, both paths move upwards in 

the SOM, but then the RTA path moves back towards the origin (notice proximity of vertices 1 

and 11) and continues towards the extreme bottom right of the SOM. This is in fact an extreme 

region, even at the national scale, with the census data indicating 100% of the population being 

black. As the central business district (CBD) region is entered, the RTA path suddenly bridges a 

gigantic distance in attribute space, arriving close to the French Quarter in both attribute and 

geographic space. As the RTA path leaves the French Quarter and enters the Faubourg-Marigny, 

it temporarily meets up with the path taken by private vehicle, while the latter traverses the Bayou 

St. John area. From there, the two paths diverge again, as the RTA path moves toward a region 

that is predominantly black and with high percentage of rental property (New Marigny) and the 

private vehicle travels through areas with larger percentage of white population and owner-

occupied housing (across from City Park and in Mirabeau Gardens) (Figure 7).  
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Overall, the two SATPs traverse distinct neighborhoods that are compact in both geographic 

and attribute space, reflecting the common history of block groups in a neighborhood. Traveling 

between neighborhoods can involve bridging tremendous gaps in n-dimensional space, either 

directly (e.g., entering the CBD) or via bridge vertices (e.g., node 23). 

3.3. Comparing paths within multiple geographic areas 

One of the driving motivations behind the development of the SATP concept was the desire to 

compare space-time paths captured in disjoint geographic areas. This is demonstrated in the final 

example in this paper. The commuting paths captured in New Orleans are here combined with 

those captured in San Diego, under the same assumption of having either private or public 

transport options at one’s disposal (Figure 6). Origin of San Diego commuting paths is the 

author’s residence in La Jolla and destination is San Diego State University.  

Comparison of paths from different cities may first simply involve observing the degree of 

diversity of locations along the path according to spatial patterns of links and vertices in the 

spatialization (Figure 9). In the case of New Orleans, one observes traversal of named 

neighborhoods as distinct regions, with clear separation along an SATP (see also Figure 8). 

Compared to this, neighborhoods along San Diego paths appear less well organized and distinct. 

The private vehicle path shows plenty of crisscrossing between sometimes distant vertices (right 

portion of Figure 9). Meanwhile, the vast majority of vertices along the public transport path are 

closely clustered together (left portion of Figure 9), indicating relative uniformity in attribute 

space, when compared to New Orleans. There are basically only two major breaks from that 

uniformity. One corresponds to the Bird Rock community on the southern edge of La Jolla. The 

other stems from the path barely entering two block groups along Mission Bay.  

A major advantage of the SATP approach is that the common base map allows overlays of 

various paths. When this is done for the public transport paths, one observes that the San Diego 

and New Orleans paths have fairly little in common (left portion of Figure 9). For the most part, 

they do not enter the same regions in attribute space. One major exception is seen where the 

upper portion of the New Orleans path intersects with the lower portion of the San Diego path. In 

other words, when traveling by public transport from La Jolla to SDSU, the closest parts of the 

New Orleans public transport path that one will encounter are the French Quarter and Faubourg-

Marigny (see public transport portions in Figures 8 and 9).  

In further analyzing the specific causes for relative similarity/dissimilarity one may now want 

to examine which variables are most related to the observed patterns. There are two principal 

choices in doing this: (a) exploring the distribution of variables within the finished computational 

model; or (b) exploring the distribution of original input values across the set of transected 

objects. The former is shown in Figure 7, where the New Orleans paths are combined with SOM 
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component planes. The other approach is illustrated in Figures 10 and 11, where multivariate 

point symbols represent a total of 21 variables in four logical groupings. The public transport 

paths for New Orleans and San Diego are visualized side-by-side, with inset maps showing more 

detail for the dense cluster of block groups that includes most of the San Diego path and the 

French Quarter / Faubourg-Marigny portion of the New Orleans path.  

 

[Insert Figure 10 approx. here] 

 

[Insert Figure 11 approx. here] 

 

One can now observe the attributes of the Bird Rock and Mission Bay portions of the San 

Diego public transport path, which set these block groups apart from the rest of the San Diego 

and New Orleans paths alike, most notably the large proportion of white population and owner-

occupied housing. Finally, the overlap area between the public transport paths in the two cities 

can be investigated. Here one will find the most striking similarity not in the racial and housing 

variables, but in the age and household variables. Specifically, the overlap area consists of block 

groups with a large proportion of persons between 22 and 39 years old and a high percentage of 

single male households and, to a lesser extent, single female households. Those then are the 

variables pulling the French Quarter / Faubourg-Marigny and a portion of the Mission Valley 

towards each other.  

4. Conclusions 

This paper introduces a conceptualization of geographic travel as a series of discrete 

geographic objects being encountered in n-dimensional attribute space. Path continuity is here 

solely derived from objects’ topological relationships in geographic coordinate space. 

Alternatively, a geographic path could be conceptualized as simultaneously traversing n 

continuous fields of attributes of varying smoothness, like elevation, temperature, or land cover. 

This will lead to an SATP with higher geometric detail and more differentiation among paths, 

similar to the effects previously observed after insertion of temporally interpolated vertices into 

multi-temporal attribute trajectories of spatially fixed objects (Skupin and Hagelman, 2005).  

When dealing with census data, one will frequently find that the street segments on which 

people travel coincide with area boundaries of census enumeration units. Combined with the 

peculiarities of a particular data capture technique (here: GPS from within a moving vehicle), this 

can lead to a somewhat erratic crisscrossing of boundaries, which becomes accordingly 

represented in the spatialization. To address this, one may want to recognize such razor’s edge 
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travel through incorporation of attributes from both of the adjacent objects and map out the SATP 

accordingly. 

One of the ideas informing this research is that people’s trajectories through geographic space 

exist in a complex relationship with their personal histories, attitudes, and perspectives. A number 

of recent research efforts are founded on this notion, included co-called feminist visualization 

(Kwan, 2000, Kwan, 2002). This paper asserts that additional insight could be gained through 

visualization of geographic paths derived from their location in n-dimensional attribute space. 

Defining a spatialization methodology is a necessary first step that this paper focuses on. In the 

short term, some questions have to be answered regarding the specific technical solutions 

proposed here. This includes algorithmic choices among spatial layout techniques (here: SOM) 

and respective parameters (such as the model’s granularity). Other questions relate to cognitive 

plausibility. For example, there may be an inherent conflict between the spatial continuity of  an 

SATP and the apparent crossing of potentially diverse regions in a spatialization. What one 

observes here is more akin to wormhole jumping or commercial air travel than to the continuity 

encountered during road-based travel.  

The work described here is driven by an aspiration to develop explicit visual manifestations of 

n-dimensional patterns and structures within and among the paths of people though geographic 

space. Use of the easily measured attributes of geographic space, as captured during a population 

census or through satellite remote sensing, is a natural first step. However, a long-term goal is to 

more directly incorporate visual impressions that are experienced by and are influencing people 

along their path, most notably along roadways (Appleyard et al., 1964). This ultimately connects 

with the need to develop visualizations supporting better understanding of the relationship that 

people have with geographic reality, in particular their sense of place (Relph, 1976). To that end, 

impressions based on concrete, ground-level sensory input, including sight and sound, will have 

to be incorporated as the SATP notion is developed further.  
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Normalized by
1 Population size Area
2 White population Population size
3 Black Population size
4 American Indian / Eskimo Population size
5 Asian Population size
6 Hawaiian / Pacific Islander Population size
7 Other Population size
8 Multi-race Population size
9 Hispanic Population size

10 Males Population size
11 Females Population size
12 Age < 5 Population size
13 Age 5-17 Population size
14 Age 18-21 Population size
15 Age 22-29 Population size
16 Age 30-39 Population size
17 Age 40-49 Population size
18 Age 50-64 Population size
19 Age >= 65 Population size
20 Median age n/a
21 Average household size n/a
22 Households w 1 male Households
23 Households w 1 female Households
24 Households married w/ children Households
25 Households married w/o children Households
26 Male head of household w/ children Households
27 Female head of household w/ children Households
28 Average family size n/a
29 Vacant housing units Housing units
30 Owner-occupied housing unit Housing units
31 Renter-occupied housing unit Housing units

Variable

 
 

Table 1. Variables for 200,000+ U.S. census block groups used as input to SOM training. 
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Figure 1. Creation of Spatialized Attribute-Time Path (SATP) through combination of 
GPS and SOM. 
Figure 2. Different application modes for the SATP concept. 
Figure 3. A drive through Vienna, Austria. Polygon objects numbered in order of 
traversal. 
Figure 4. Transect of Vienna as spatialized attribute-time path. 
Figure 5. Some component planes of a self-organizing map trained with all 200,000+ 
U.S. census blockgroups. Lighter shading indicates higher values. 
Figure 6. Routes through two different study areas - geographic overview. 
Figure 7. Single site traversed by multiple paths. Example of commuting in New Orleans. 
Figure 8. Commuting in New Orleans - overview of traversed neighborhoods in SOM 
space. 
Figure 9. Multiple sites traversed by multiple paths - comparison of commuting in New 
Orleans and San Diego. 
Figure 10. Commuting via Public Transport in New Orleans and San Diego - Race and 
Housing Variables. Overlap Zone Shown in Detail. 
Figure 11. Commuting via Public Transport in New Orleans and San Diego - Age and 
Household Variables. Overlap Zone Shown in Detail. 
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Figure 1. Creation of Spatialized Attribute-Time Path (SATP) through combination of GPS and 
SOM. 

 

 

 
 

Figure 2. Different application modes for the SATP concept. 
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Figure 3. A drive through Vienna, Austria. Polygon objects numbered in order of traversal. 
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Figure 4. Transect of Vienna as spatialized attribute-time path. 

 

 

 
Figure 5. Some component planes of a self-organizing map trained with all 200,000+ U.S. census 

blockgroups. Lighter shading indicates higher values. 
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Figure 6. Routes through two different study areas - geographic overview. 
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Figure 7. Single site traversed by multiple paths. Example of commuting in New Orleans. 

 

 
Figure 8. Commuting in New Orleans - overview of traversed neighborhoods in SOM space. 
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Figure 9. Multiple sites traversed by multiple paths - comparison of commuting in New Orleans and 

San Diego. 
 

 
Figure 10. Commuting via Public Transport in New Orleans and San Diego - Race and Housing 

Variables. Overlap Zone Shown in Detail. 
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Figure 11. Commuting via Public Transport in New Orleans and San Diego - Age and Household 

Variables. Overlap Zone Shown in Detail. 
 

 

 

 




